Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, ). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно .

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и R set .

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора R sens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

Мощность, рассеиваемая на резисторе равна:

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, ). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема .

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

К написанию этой статьи меня подтолкнул материал уважаемого ear " ", в которой он рассказывает, как его собрать из ненужного компьютерного блока питания АТ/АТХ. После этой переделки, неиспользуемыми останутся один или два маленьких трансформатора (в разных блоках по разному) из которых можно собрать простейший повышающий преобразователь на BUZ12, например для питания от 12В маломощных ЛДС (мощность которой не должно превышать габаритную мощность трансформатора, иначе она не будет светить). Привожу схемы для вариантов с одним трансформатором или с двумя.

Схемотехника данного преобразователя очень напоминает аналогичную, с использованием КТ805, но за счёт меньшего сопротивления перехода канала исток-сток полевого транзистора (доли Ом), её КПД значительно выше. Самое сложное в нашей конструкции - это перемотка ферритовых трансформаторов. Для начала выпаенные трансформаторы "отварите" в кипящей воде в течении получаса, чтобы размягчить клей. Пока они не остыли - разделите половинки. Если вдруг они сломаются - не растраивайтесь, так как их можно склеить клеем ПВА. Размотайте с каркасов старые обмотки и наматайте новые (начала обмоток показаны точками), стараясь укладывать провод виток к витку и делайте изоляцию между обмотками, например изолентой.


При первом включения соблюдайте фазировку обмоток, чтобы случайно не спалить транзистор.


Вот что у меня в итоге получилось. Кроме люминисцентных ламп, можно подключать к устройству любую другую маломощную нагрузку, до 10-ти ватт. Например зарядные устройства для мобильной техники, если вы на природе и имеете доступ к авто.

Светодиоды, как источники оптического излучения, имеют неоспоримые достоинства: малые габариты, высокую яркость свечения при минимальном (единицы мА) токе, экономичность.

Но в силу технологических особенностей они не могут светиться при напряжении ниже 1,6... 1,8 В. Это обстоятельство резко ограничивает возможность применения светодиодных излучателей в широком классе устройств, имеющих низковольтное питание, обычно от одного гальванического элемента.

Несмотря на очевидную актуальность проблемы низковольтного питания светодиодных источников оптического излучения, известно весьма ограниченное число схемных решений, в которых авторы пытались решить эту задачу.

В этой связи ниже приведен обзор схем питания светодиодов от источника низкого (0,25...1,6 В) напряжения. Многообразие схем, приведенных в этой главе, можно свести к двум основным разновидностям преобразования напряжения низкого уровня в высокое. Это схемы с емкостными и индуктивными накопителями энергии [Рк 5/00-23].

Удвоитель напряжения

На рисунке 1 показана схема питания светодиода с использованием принципа удвоения напряжения питания. Генератор низкочастотных импульсов выполнен на транзисторах разной структуры: КТ361 и КТ315.

Частота следования импульсов определяется постоянной времени R1C1, а продолжительность импульсов — постоянной времени R2C1. С выхода генератора короткие импульсы через резистор R4 подаются на базу транзистора VT3, в коллекторную цепь которого включен светодиод HL1 (АЛ307КМ) красного цвета свечения и германиевый диод VD1 типа Д9.

Между выходом генератора импульсов и точкой соединения светодиода с германиевым диодом подключен электролитический конденсатор С2 большой емкости.

В период продолжительной паузы между импульсами (транзистор VT2 закрыт и не проводит ток) этот конденсатор заряжается через диод VD1 и резистор R3 до напряжения источника питания. При генерации короткого импульса транзистор VT2

открывается. Отрицательно заряженная обкладка конденсатора С2 оказывается соединенной с положительной шиной питания. Диод VD1 запирается. Заряженный конденсатор С2 оказывается подключенным последовательно с источником питания.

Суммарное напряжение приложено к цепи светодиод — переход эмиттер — коллектор транзистора VT3. Поскольку тем же импульсом транзистор VT3 отпирается, его сопротивление эмиттер — коллектор становится малым.

Таким образом, практически удвоенное напряжение питания (исключая незначительные потери) оказывается кратковременно приложенным к светодиоду: следует его яркая вспышка. После этого процесс заряда — разряда конденсатора С2 периодически повторяется.

Рис. 1. Принципиальная схема удвоителя напряжения для питания светодиода.

Поскольку светодиоды допускают работу при кратковременном токе в импульсе, в десятки раз превосходящем номинальные значения, повреждения светодиода не происходит.

Если необходимо повысить надежность работы светодиодных излучателей с низковольтным питанием и расширить диапазон напряжения питания в сторону увеличения, последовательно со светодиодом следует включить токоограничи-вающий резистор сопротивлением десятки, сотни Ом.

При использовании светодиода типа АЛ307КМ с напряжением начала едва заметного свечения 1,35... 1,4 В и напряжением, при котором без ограничительного сопротивления ток через светодиод составляет 20 мА, 1,6... 1,7 В, рабочее напряжение генератора, представленного на рисунке 1, составляет 0,8... 1,6 В.

Границы диапазона определены экспериментально тем же образом: нижняя указывает напряжение начала свечения светодиода, верхняя — напряжение, при котором ток, потребляемый всем устройством, составляет примерно 20 мА, т.е. не превышает в самых неблагоприятных условиях эксплуатации предельный ток через светодиод и, одновременно, сам преобразователь.

Как уже отмечалось ранее, генератор (рисунок 1) работает в импульсном режиме, что является с одной стороны недостатком схемы, с другой стороны — достоинством, поскольку позволяет генерировать яркие вспышки света, привлекающие внимание.

Генератор достаточно экономичен, поскольку средний ток, потребляемый устройством, невелик. В то же время в схеме необходимо использовать хотя и низковольтный, но довольно громоздкий электролитический конденсатор большой емкости (С2).

Упрощенный вариант преобразователя напряжения

На рисунке 2 показан упрощенный вариант генератора, работающего аналогично изложенному выше. Генератор, используя малогабаритный электролитический конденсатор, работает при напряжении питания от 0,9 до 1,6 В.

Средний ток, потребляемый устройством, не превышает 3 мА при частоте следования импульсов около 2 Гц. Яркость генерируемых вспышек света несколько ниже, чем в предыдущей схеме.

Рис. 2. Схема простого низковольтного преобразователя напряжения на двух транзисторах из 0,9В в 2В.

Генератор с применением телефонного капсюля

Генератор, показанный на рис. 9.3, использует в качестве нагрузки телефонный капсюль ТК-67. Это позволяет повысить амплитуду генерируемых импульсов и понизить тем самым на 200 мВ нижнюю границу начала работы генератора.

За счет перехода на более высокую частоту генерации удается осуществить непрерывную «перекачку» (преобразование) энергии и ощутимо снизить емкости конденсаторов.

Рис. 3. Схема низковольтного генератора преобразователя напряжения с использованием катушки телефона.

Генератор с удвоением напряжения на выоде

На рисунке 4 показан генератор с выходным каскадом, в котором осуществляется удвоение выходного напряжения. При закрытом транзисторе VT3 к светодиоду приложено только небольшое по величине напряжение питания.

Электрическое сопротивление светодиода велико в силу ярко выраженной нелинейности ВАХ и намного превышает сопротивление резистора R6. Поэтому конденсатор С2 оказывается подключенным к источнику питания через резисторы R5 и R6.

Рис. 4. Схема низковольтного преобразователя с удвоением выходного напряжения.

Хотя вместо германиевого диода использован резистор R6, принцип работы удвоителя напряжения остается тем же: заряд конденсатора С2 при закрытом транзисторе VT3 через резисторы R5 и R6 с последующим подключением заряженного конденсатора последовательно с источником питания.

При приложении удвоенного таким образом напряжения динамическое сопротивление светодиода на более крутом участке ВАХ становится на время разряда конденсатора порядка 100 Ом и менее, что намного ниже сопротивления шунтирующего конденсатор резистора R6.

Расширить рабочий диапазон питающих напряжений (от 0,8 до 6 В) позволяет использование резистора R6 вместо германиевого диода. Если бы в схеме стоял германиевый диод, напряжение питания устройства было бы ограничено величиной 1,6...1,8 В.

При дальнейшем увеличении напряжения питания ток через светодиод и германиевый диод вырос бы до неприемлемо высокой величины и произошло бы их необратимое повреждение.

Преобразователь на основе генератора ЗЧ

В генераторе, представленном на рисунке 5 одновременно со световыми вырабатываются звонкие импульсы звуковой частоты. Частота звуковых сигналов определяется параметрами колебательного контура, образованного обмоткой телефонного капсюля и конденсатора С2.

Рис. 5. Принципиальная схема преобразователя напряжения для светодиода на основе генератора ЗЧ.

Преобразователи напряжения на основе мультивибраторов

Источники питания светодиодов на основе мультивибраторов изображены на рисунках 6 и 7. Первая схема выполнена на основе асимметричного мультивибратора, вырабатывающего, как и устройства (рис. 1 — 5), короткие импульсы с протяженной междуимпульсной паузой.

Рис. 6. Низковольтный преобразователь напряжения на основе асимметричного мультивибратора.

Накопитель энергии — электролитический конденсатор СЗ периодически заряжается от источника питания и разряжается на светодиод, суммируя свое напряжение с напряжением питания.

В отличие от предыдущей схемы генератор (рис. 7) обеспечивает непрерывный характер свечения светодиода. Устройство выполнено на основе симметричного мультивибратора и работает на повышенных частотах.

Рис. 7. Преобразователь для питания светодиода от низковольтного источника 0,8 - 1,6В.

В этой связи емкости конденсаторов в этой схеме на 3...4 порядка ниже. В то же время яркость свечения заметно понижена, а средний ток, потребляемый генератором при напряжении источника питания 1,5 6 не превышает 3 мА.

Преобразователи напряжения с последовательным соединением транзисторов

Рис. 8. Преобразователь напряжения с последовательным соединением транзисторов разного типа проводимости.

В генераторах, показанных далее на рисунках 8 — 13, в качестве активного элемента используется несколько необычное последовательное соединение транзисторов разного типа проводимости, к тому же, охваченных положительной обратной связью.

Рис. 9. Двухтранзисторный преобразователь напряжения для светодиода с применением катушки от телефона.

Конденсатор положительной обратной связи (рисунок 8) одновременно выполняет роль накопителя энергии для получения напряжения, достаточного для питания светодиода.

Параллельно переходу база — коллектор транзистора VT2 (типа КТ361) включен германиевый диод (либо заменяющее его сопротивление, рис. 12).

В генераторе с RC-цепочкой (рис. 8) за счет существенных потерь напряжения на полупроводниковых переходах рабочее напряжение устройства составляет 1,1... 1,6 В.

Заметно понизить нижнюю границу напряжения питания стало возможным за счет перехода на LC-вариант схемы генераторов, использующих индуктивные накопители энергии (рис. 9 — 13).

Рис. 10. Схема простого низковольтного преобразователя напряжения 0,75В -1,5В в 2В на основе LC-генератора.

В качестве индуктивного накопителя энергии в первой из схем использован телефонный капсюль (рис. 9). Одновременно со световыми вспышками генератор вырабатывает акустические сигналы.

При увеличении емкости конденсатора до 200 мкФ генератор переходит в импульсный экономичный режим работы, вырабатывая прерывистые световые и звуковые сигналы.

Переход на более высокие рабочие частоты возможен за счет использования малогабаритной катушки индуктивности с большой добротностью. В связи с этим появляется возможность заметно уменьшить объем устройства и понизить нижнюю границу питающего напряжения (рис. 10 — 13).

В качестве индуктивности использована катушка контура промежуточной частоты от радиоприемника «ВЭФ» индуктивностью 260 мкГн. На рис. 11, 12 показаны разновидности таких генераторов.

Рис. 11. Схема низковольтного преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Рис. 12. Схема простого преобразователя напряжения для светодиода с катушкой от ПЧ-контура приемника.

Наконец, на рисунке 13 показан наиболее упрощенный вариант устройства, в котором вместо конденсатора колебательного контура использован светодиод.

Преобразователи напряжения конденсаторного типа (с удвоением напряжения), используемые для питания светодиодных излучателей, теоретически могут обеспечить снижение рабочего напряжения питания только до 60% (предельное, идеальное значение — 50%).

Рис. 13. Очень простой низковольтный преобразователь напряжения с включенным светодиодом вместо конденсатора.

Использование в этих целях многокаскадных умножителей напряжения неперспективно в связи с прогрессивно возрастающими потерями и падением КПД преобразователя.

Преобразователи с индуктивными накопителями энергии более перспективны при дальнейшем снижении рабочего напряжения генераторов, обеспечивающих работу светодиодов. При этом сохраняются высокий КПД и простота схемы преобразователя.

Преобразователи напряжения индуктивного и индуктивно-емкостного типа

На рисунках 14 — 18 показаны преобразователи для питания светодиодов индуктивного и индуктивно-емкостного типа, выполненные на основе генераторов с использованием в качестве активного элемента аналогов инжекционно-полевого транзистора [Рк 5/00-23].

Рис. 14. Схема низковольтного преобразователя напряжения 1-6В в 2В индуктивно-емкостного типа.

Преобразователь, изображенный на рисунке 14, является устройством индуктивно-емкостного типа. Генератор импульсов выполнен на аналоге инжекционно-полевого транзистора (транзисторы VT1 и VT2).

Элементами, определяющими рабочую частоту генерации в диапазоне звуковых частот, являются телефонный капсюль BF1 (типа ТК-67), конденсатор С1 и резистор R1. Короткие импульсы, вырабатываемые генератором, поступают на базу транзистора VT3, открывая его.

Одновременно происходит заряд/разряд емкостного накопи 1еля энергии (конденсатор С2). При поступлении импульса положительно заряженная обкладка конденсатора С2 оказывается соединенной с общей шиной через открытый на время действия импульса транзистор VT2. Диод VD1 закрывается, транзистор VT3 — открыт.

Таким образом, к цепи нагрузки (светодиоду HL1) оказываются присоединены последовательно включенные источник питания и заряженный конденсатор С2, в результате чего следует яркая вспышка светодиода.

Расширить диапазон рабочих напряжений преобразователя позволяет транзистор VT3. Устройство работоспособно при напряжениях от 1,0 до 6,0 В. Напомним, что нижняя граница соответствует едва заметному свечению светодиода, а верхняя — потреблению устройством тока в 20 мА.

В области малых напряжений (до 1,45 В) звуковая генерация не слышна, хотя по мере последующего увеличения напряжения питания устройство начинает вырабатывать и звуковые сигналы, частота которых довольно быстро понижается.

Переход на более высокие рабочие частоты (рис. 15) за счет использования высокочастотной катушки позволяет уменьшить емкость конденсатора, «перекачивающего» энергию (конденсатор С1).

Рис. 15. Принципиальная схема низковольтного преобразователя напряжения с ВЧ-генератором.

В качестве ключевого элемента, подключающего светодиод к «плюсовой» шине питания на период следования импульса, использован полевой транзистор VT3 (КП103Г). В результате диапазон рабочих напряжений этого преобразователя расширен до 0,7... 10 В.

Заметно упрощенные, но работающие в ограниченном интервале питающих напряжений устройства показаны на рисунках 16 и 17. Они обеспечивают свечение светодиодов в диапазоне 0,7...1,5 В (при R1=680 Ом) и 0,69...1,2 В (при R1=0 Ом), а также от 0,68 до 0,82 В (рис. 17).

Рис. 16. Принципиальная схема упрощенного низковольтного преобразователя напряжения с ВЧ-генератором.

Рис. 17. Упрощенный низковольтный преобразователь напряжения с ВЧ-генератором и телефонным капсюлем в качестве катушки.

Наиболее прост генератор на аналоге инжекционно-полевого транзистора (рис. 18), где светодиод одновременно выполняет роль конденсатора и является нагрузкой генератора. Устройство работает в довольно узком диапазоне питающих напряжений, однако яркость свечения светодиода достаточно высока, поскольку преобразователь (рис. 18) является чисто индуктивным и имеет высокий КПД.

Рис. 18. Низковольтный преобразователь напряжения с генератором на аналоге инжекционно-полевого транзистора.

Следующий вид преобразователей достаточно хорошо известен и является более традиционным. Это преобразователи трансформаторного и автотрансформаторного типа.

На рис. 19 показан генератор трансформаторного типа для питания светодиодов низковольтным напряжением. Генератор содержит лишь три элемента, одним из которых является светоизлучающий диод.

Без светодиода устройство является простейшим блокинг-генератором, причем на выходе трансформатора может быть получено довольно высокое напряжение. Если в качестве нагрузки генератора использовать светодиод, он начинает ярко светиться даже при низком значении питающего напряжения (0,6...0,75 В).

Рис. 19. Схема преобразователя трансформаторного типа для питания светодиодов низковольтным напряжением.

В этой схеме (рис. 19) обмотки трансформатора имеют по 20 витков провода ПЭВ 0.23. В качестве сердечника трансформатора использовано ферритовое кольцо М1000 (1000НМ) К 10x6x2,5. В случае отсутствия генерации выводы одной из обмоток трансформатора следуе! поменять местами.

Преобразователь, показанный на рисунке 20, имеет самое низкое напряжение питания из всех рассмотренных устройств. Существенного понижения нижней границы рабочего напряжения удалось достичь за счет оптимизации выбора числа (соотношения) витков обмоток и способа их включения. При использовании высокочастотных германиевых транзисторов типа 1Т311, 1Т313 (ГТ311, ГТ313) подобные преобразователи начинают работать пои напояжении питания выше 125 мВ.

Рис. 20. Низковольтный преобразователь напряжения из 0,25В - 0,6В в 2В.

Рис. 21. Экспериментально измеренные характеристики генератора.

В качестве сердечника трансформатора, как и в предыдущей схеме, использовано ферритовое кольцо М1000 (1000НМ) К10x6x2,5. Первичная обмотка выполнена проводом ПЭВ 0,23 мм, вторичная — ПЭВ 0,33. Довольно яркое свечение светодиода наблюдается уже при напряжении 0,3 В.

На рисунке 21 представлены экспериментально измеренные характеристики генератора (рис. 20) при варьировании числа витков обмоток. Из анализа полученных зависимостей следует, что существует область оптимального соотношения числа витков первичной и вторичной обмоток, причем, с увеличением числа витков первичной обмотки минимальное рабочее напряжение преобразователя плавно снижается, причем одновременно сужается и диапазон рабочих напряжений преобразователя.

Для решения обратной задачи — расширения диапазона рабочих напряжений преобразователя — последовательно с ним может быть подключена RC-цепочка (рис. 22).

Рис. 22. Схема низковольтного преобразователя напряжения с применением RC-цепочки.

Схемы преобразователей по типу индуктивной или емкостной трех-точки

Еще один вид преобразователей представлен на рисунки 23 — 29. Их особенность — использование индуктивных накопителей энергии и схем, выполненных по типу «индуктивной» или «емкостной трех-точки» с барьерным режимом включения транзистора.

Генератор (рис. 23) работоспособен в диапазоне напряжений от 0,66 до 1,55 В. Для оптимизации режима работы требуется подбор номинала резистора R1. В качестве катушки индуктивности, как и во многих предыдущих схемах. использована катушка контура фильтра ПЧ индуктивностью 260 мкГн.

Рис. 23. Преобразователь напряжения для светодиода на одном транзисторе КТ315.

Так, при числе витков первичной обмотки п(1) равном 50...60 и числе витков вторичной л(II) — 12, устройство работоспособно в диапазоне питающих напряжений 260...440 мВ (соотношение числа витков 50 к 12), а при соотношении числа витков 60 к 12 — 260...415 мВ.

При использовании ферритового сердечника другого типа или размера это соотношение может нарушиться и быть иным. Полезно самостоятельно выполнить подобное исследование, а результаты для наглядности представить в виде графика.

Весьма интересным представляется использование туннельного диода в рассматриваемых генераторах (аналогичного приведенному на рис. 20), включенного вместо перехода эмиттер — база транзистора VT1.

Генератор (рис. 24) немногим отличается от предыдущего (рис. 23). Интересной его особенностью является то, что яркость свечения светодиода меняется с ростом напряжения питания (рис. 25).

Рис. 24. Преобразователь напряжения с меняющейся яркостью свечения светодиода.

Рис. 25. График зависимости яркости свечения светодиода от питающего генератор напряжения (для рисунка 24).

Причем максимум яркости достигается при 940 мВ. Преобразователь, показанный на рисунке 26, можно отнести к генераторам, выполненным по схеме «трехточки», причем светодиод выполняет роль одного из конденсаторов.

Трансформатор устройства выполнен на ферритовом кольце (1000HM) К10x6x2,5, причем его обмотки содержат приблизительно по 15...20 витков провода ПЭЛШО 0,18.

Рис. 26. Низковольтный преобразователь напряжения с генератором выполненном на основе трехточки.

Преобразователь (рис. 27) отличается от предыдущего точкой подключения светодиода. Зависимость яркости свечения светодиода от напряжения питания показана на рисунке 28: при повышении напряжения питания яркость вначале нарастает, затем резко снижается, после чего снова растет.

Рис. 27. Простой преобразователь напряжения для низковольтного питания светодиода АЛ307.

Рис. 28. Зависимость яркости свечения светодиода от напряжения питания.

Наиболее простой схемой преобразователей этого типа является схема, представленная на рисунке 29. Установление рабочей точки достигается подбором резистора R1.

Светодиод, как и в ряде предшествующих схем, одновременно играет роль конден сатора. В порядке эксперимента рекомендуется подключить па раллельно светодиоду конденсатор и подобрать его емкость.

Рис. 29. Очень простая схема низковольтного преобразователя напряжения на одном транзисторе.

В заключение

В качестве общего замечания по налаживанию схем, представленных выше, следует отметить, что напряжение питания всех рассмотренных устройств во избежание повреждения светодиодов не должно (за редким исключением) превышать значения 1.6...1.7 В.

Литература: Шустов М.А. Практическая схемотехника (Книга 1).

Источники света на базе полупроводниковых светодиодов сегодня получают все большее и быстрое распространение благодаря ряду преимуществ перед «классическими» источниками на лампах накаливания или газоразрядных:

  • эффективность излучения — до 40 лм/Вт;
  • долговечность — более 100000 часов;
  • стойкость к воздействию низких температур (до -50°С) и механических вибраций;
  • широта и точность воспроизведения излучаемого спектра;
  • возможность микропроцессорного управления вкл/выкл и уровнем светимости в полном диапазоне без изменения спектра излучения;
  • меньшие габариты и масса.

При одинаковом уровне излучения линейка светодиодов потребляет мощность в два и более раза меньшую, чем лампа накаливания. Например, 6 сверхярких светодиодов с суммарной мощностью потребления 30 Вт (6х5 = 30 Вт) обеспечивают световой поток 750 лм, такой же, как лампа накаливания мощностью 75 Вт.

Все эти качества определяют предпочтительное использование светодиодных источников света в новых разработках.

У ламп накаливания, газоразрядных или газонаполненных, характеристики зависят от уровня и стабильности напряжения на них. У светодиодов характеристики светимости зависят от уровня и стабильности протекающего через них тока. Поэтому к устройствам питания светодиодов (в дальнейшем преобразователям) предъявляются специальные требования по регулированию выходного тока в зависимости от характеристик источника питания и нагрузки.

Типы преобразователей и области применения

В соответствии с классом решаемых задач можно выделить три основные исходные ситуации, определяющие требования к преобразователям, в зависимости от области применения.

1. Понижающий. Напряжение источника питания во всех режимах работы заведомо не ниже требуемого выходного напряжения для управления светодиодами.

Данная ситуация характерна при проектировании систем освещения, источником питания которых является сеть переменного тока 220 В или подобная. Это может быть освещение помещений, улиц, вагонов поездов, рекламная подсветка и пр. Сюда же можно отнести и источники света на транспорте с напряжением бортовой сети 12, 24 В.

2. Повышающий. Напряжение источника питания во всех режимах работы заведомо не выше требуемого выходного напряжения для управления светодиодами.

Данная ситуация характерна при проектировании систем подсветки дисплеев и других устройств визуализации, где для питания матрицы с большим количеством светодиодов в столбце применяются источники низкого вторичного напряжения, аккумуляторы и батареи.

3. Конвертерный. Напряжение источника питания может быть как выше, так и ниже требуемого выходного напряжения для управления светодиодами.

Подобная ситуация чаще всего возникает в портативных устройствах с автономным питанием, где напряжения заряженной и разряженной батареи сильно отличаются.

Понижающие преобразователи

Для их реализации наиболее часто используются Flyback, Buck (Step-Down ) — схемы преобразования. Характеризуются максимальной простотой и высокой эффективностью.

Рассмотрим типичный пример применения Flyback-пре-образователя на базе регулятора ON Semiconductor NCP1028 (рис. 1).

Рис. 1.

NCP1028 — новейший представитель импульсных регуляторов ONS со встроенным силовым MOSFET, позволяющим создавать источники питания мощностью до 25 Вт без использования внешнего силового транзистора. Внутренняя схема обработки сигнала обратной связи (ОС) обеспечивает непосредственное подключение фототранзистора без дополнительных компонентов. Дополнительная обмотка силового трансформатора Т1 и схема внешнего питания NCP1028 необходимы только в случае проектирования источника с предельно допустимой мощностью потребления выше 20 Вт. При небольшой мощности потребления питание NCP1028 может осуществляться за счет встроенной динамической системы питания (Dynamic Self-Supply ), для работы которой требуется только накопительный конденсатор С8. Обратная связь по току выполнена на базе резистивного датчика R3 и усилителя сигнала на транзисторе Q1.

Во многих применениях, где нет непосредственного контакта пользователя с устройством, например, в уличном освещении, от источника питания не требуется гальваническая развязка. В этом случае схема преобразователя может быть значительно упрощена. Включение NCP1028 или подобного регулятора по схеме стандартного Buck-преобразователя позволяет получить простое и дешевое решение для массового применения (рис. 2).

Рис. 2. Простой Buck-регулятор без гальванической развязки на базе NCP1014

Здесь NCP1014 (аналог NCP1028, но с меньшим допустимым током MOSFET 450 мА) — ключ, L3 — дроссель, D5 — выпрямитель. В системах освещения не требуется высокая стабильность тока, поэтому можно обойтись без замкнутой ОС, реализовав уставку тока через дроссель при помощи резистора R2, подключенного к выводу 2 (вход сигнала ОС) NCP1014. Такое решение обеспечивает точность регулирования порядка ±5%. Безусловно, при необходимости более точного регулирования может быть применена схема с замкнутой ОС с датчиком тока (рис. 3).

Рис. 3.

При большом отношении входного напряжения к выходному можно реализовать так называемую накачку (трансформацию) тока за счет применения расщепленного дросселя (рис. 3). Выпрямитель D5 подключен к части обмотки L3 в соотношении 3:1. Подобное решение позволяет обеспечить ток нагрузки, превышающий допустимый ток ключа, в данном случае встроенного силового транзистора NCP1014. Например, при Uвх = 220 В, Uвых = 16…20 В (4…5 сверхярких светодиодов с прямым напряжения падением на каждом 4…5 В) отношение Uвх/ Uвых составляет грубо 10:1. Такое отношение позволяет установить коэффициент преобразования тока не менее 4. На рис. 4 представлены осциллограммы сигналов для такого варианта схемы с расщепленным дросселем.

Рис. 4.

Как видно из диаграммы СН2 (голубая), значение тока, протекающего через транзистор NCP1014 (открыт), не превышает 250 мА, а при закрывании транзистора ток в расщепленной части обмотки L3 возрастает практически до 1 А.

Для дальнейшего упрощения и снижения себестоимости преобразователя фильтр на L2 может быть исключен из схемы в зависимости от заданных требований к уровню излучаемых помех. При наличии данного фильтра обеспечивается уровень помех не более 45 дБ (рис. 5).

Рис. 5. Спектр излучаемых помех по цепям питания для схемы, показанной на рис. 2

Для питания светодиодных источников света в электрооборудовании транспортных средств, где напряжение бортовой сети составляет десятки вольт, удобнее всего применять преобразователи с допустимым входным напряжением порядка 40…60 В.

В зависимости от решаемой задачи могут быть применены как классический компенсационный способ регулирования, так и импульсный преобразовательный. ON Semiconductor специально для автомобильных применений выпускает драйвер NUD4001 — стабилизатор тока светодиодов (рис. 6).

Рис. 6.

На его базе можно легко реализовать, например, проекты задних фонарей автомобиля, подсветки оборудования, органов управления и пр. Преимуществом NUD4001 является простота его использования, благодаря компенсационному принципу регулирования, для задания расчетного тока используется единственный внешний компонент — резистор Rext.

Для получения более высокого КПД, не ниже 80%, рекомендуется использовать DC/DC-преобразователи с ОС по току. Для этих целей ON Semiconductor разработал и выпускает универсальный интегральный импульсный регулятор NCP3065, позволяющий создавать преобразовате-ли любых типов: Buck, Boost, Buck-Boost, Cuk, SEPIC. К преимуществам NCP3065 перед аналогами относятся встроенный силовой транзистор с допустимым током коллектора до 1,5 А, а также низкое значение опорного напряжения ОС 235 мВ, позволяющее применять датчики тока с малым сопротивлением и исключить усилитель сигнала ОС. Высокая допустимая частота преобразования до 250 КГц позволяет исполь зовать в схеме керамические конденсаторы малой емкости вместо электролитических, что уменьшает общие габариты и массу преобразователя.

Схема включения NCV3065 (вариант NCP3065 для автомобильных применений) в режиме понижающего преобразователя Buck (Step-Down) представлена на рис. 7.

Рис. 7.

Повышающие преобразователи

Задача увеличения напряжения, например для питания линейки последовательно соединенных светодиодов подсветки, чаще всего возникает при проектировании портативных устройств с аккумуляторным или батарейным питанием с напряжением 2…4 В. Для их реализации используются Boost (Step-Up ) — схемы преобразования индуктивного или емкостного типа. Наиболее привлекательной разработкой ON Semiconductor в этой области являются функционально законченные, полностью интегральные регуляторы NCP5008/ 5009 (рис. 8).

Рис. 8.

Регуляторы содержат встроенные датчик тока, силовой ключ на MOSFET, последовательный интерфейс для связи с микроконтроллером, а NCP5009 еще и усилитель сигнала фототранзистора, что позволяет легко реализовать, например, автоматическое регулирование яркости подсветки в зависимости от уровня внешней освещенности. Для активно развивающегося направления AMOLED дисплеев для мобильных устройств (Active Matrix Organic Light Emitting Diode ) ON Semiconductor выпускает лучшие в своем классе регуляторы NCP5810D, обеспечивающие как положительное, так и отрицательное выходные напряжения для питания AMOLED (рис. 9).

Рис. 9.

В одном корпусе размещены Boost-регулятор с фиксированным выходным напряжением +4,6 В и Buck-Boost-конвертер с настраиваемым выходным отрицательным напряжением от -2 до -15 В. Высокая частота преобразования 2 МГц обеспечивает КПД не менее 85% и малые размеры дросселей и конденсаторов схемы. Высокоэффективная обратная связь обеспечивает жесткие требования к точности выходных напряжений, характерные для AMOLED дисплеев.

Конвертерные преобразователи

Для их реализации наиболее часто используются Buck-Boost, Cuk, SEPIC конвертерные схемы преобразования. Главной их особенностью является то, что выходное напряжение преобразователя может быть как ниже, так и выше входного.

Преимуществом SEPIC перед аналогами является то, что данный конвертер не изменяет полярности выходного напряжения, что благоприятно сказывается, например, при применении микропроцессорного управления преобразователем.

Рассмотрим кратко работу базовой схемы SEPIC (Single — Ended Primary Inductance Converter ) конвертера (рис. 10).

Рис. 10.

При замыкании ключа SW энергия из источника питания Vin запасается в L1. Одновременно энергия из Cp, подключенного в этот момент параллельно L2, перетекает в L2, D1 при этом закрыт и питание нагрузки Vout обеспечивается за счет энергии, запасенной в Cout.

При размыкании SW ток L1 течет через Cp и открытый D1 в нагрузку, перезаряжая тем самым Cp для следующего цикла. Дополнительно ток L2 также течет через открытый D1 в Cout и нагрузку, тем самым заряжая Cout для следующего цикла.

Далее циклы повторяются. На рис. 10 указана взаимная полярность обмоток L1 и L2 в случае, если они имеют общий сердечник. Теоретически дроссели могут быть не связанными, но в этом случае они должны иметь удвоенную индуктивность. К тому же пульсации входного тока будут существенно больше по сравнению со связанным вариантом.

Пример SEPIC-пре-образователя на базе рассмотренного ранее универсального регулятора NCP3065 представлен на рис. 11. В табл. 1 представлены его основные характеристики.

Рис. 11.

Таблица 1. Основные характеристики регулятора NCP3065

Для обеспечения выходной мощности не менее 20 Вт ток коммутации L1 должен быть не менее 2,5 А. Внутренний силовой транзистор NCP3065 может обеспечить не более 1,5 А. Поэтому в схему введен внешний силовой ключ Q3. Схема согласования на элементах C2, D2, R6, Q2 уменьшает динамические потери при переключении Q3 и повышает тем самым КПД преобразования. Q1 используется для ШИМ управления значением выходного тока. Зависимос т ь вы ход ного ток а от уровня ШИМ линейная в диапазоне 5…90%.

Внешний вид модуля преобразователя представлен на рис. 12, размеры 57х31 мм.

Рис. 12.

Литература

1. NCP1028 High-Voltage Switcher for Medium Power Offline SMPS Featuring Low Standby Power, Data Sheet, rev. 2, December, 2007, ON Semiconductor.

2. AND8328 700 mA LED Power Supply Using Monolithic Controller and Off-line current Boosted (Tapped Inductor), Application Notes, rev.0, April, 2008, ON Semiconductor.

3. AN3321 High Brightness LED Control Interface, Application Note, rev. 0, October, 2007, Freescale Semiconductor.

4. NCP3065 Up to 1.5 A Constant Current Switching Regulator for LEDs, Data Sheet, rev. P0, June, 2007, ON Semiconductor.

5. The Future of Lighting, High Brightness LED Solutions, rev. 1, 2007, Freescale Semiconductor.

Ответственный за направление в КОМПЭЛе — Валерий Куликов

Особенности вольтамперной характеристики светодиодов заставляют в некоторые схемы с их использованием встраивать преобразователь. Речь идет о преобразователе напряжения.

Пример схемы

Большинство светодиодов питаются от напряжения в диапазоне 2-3,5 вольт. Сильные перепады напряжения приводят к изменению тока, что может быть губительным для светодиодов. В связи с этим преобразователь должен еще и делать стабильным ток. Для этого в схему включают транзистор.

Элементарная схема на транзисторе выглядит так, как показано ниже. На ней питание осуществляется за счет батареи в 1,2 вольта, то есть пальчикового элемента питания. Трансформатор, который представлен на схеме, можно сделать самостоятельно, намотав проволоку на кольцевой сердечник.

Радиолюбители рекомендуют взять медный провод с лакостойким эмалевым покрытием ПЭЛ 0,3 и ферритовое кольцо с параметрами К10x6x4. Делают две обмотки по 20 витков. Для лучшей яркости рекомендуют подбирать число и соотношение витков самостоятельно. Вместо кольца иногда используют Ш-образный трансформатор, который достают из зарядного устройства сотового.

На схеме показан диод Шоттки, поскольку его использовать предпочтительнее в низковольтных цепях, однако можно взять и обычный диод. Что касается транзистора, то выбирают маломощный тип К315, либо К805, либо еще более мощные варианты.

Как видно на схеме, конденсатор имеет характеристику в 100 мФ и рассчитан на 10 вольт, а резистор – 1 кОм и 0,5 Вт. Чтобы собрать этот простейший преобразователь для простейшего светодиода, необходимо затратить всего около 30-40 минут времени.

Преобразователи для мощных светодиодов

Помимо маломощных светодиодных лампочек, выпускаются сверхяркие светодиоды, а также блоки светодиодов, которые работают от напряжения 9, 12 Вольт или больше. Для них тоже можно собрать преобразователь на одном-двух транзисторах либо с использованием микросхем с ШИМ управлением.

Преимущество элементарных схем в том, что они собираются из минимального количества деталей, стоимость которых невысока. Если же говорить о функциях стабилизации тока и напряжения, то здесь эффективность весьма низкая. Иными словами, роль драйвера такая схемы играет с трудом.

В связи с этим в продаже можно найти специализированные микросхемы для стабилизаторов, а еще лучше купить готовый стабилизатор, тем более что цена его будет даже меньшей, чем у отдельной микросхемы.