На электропоездах с их частыми остановками и разгонами аккумулирование кинетической энергии при торможении и использование её для последующего разгона чрезвычайно актуально. Для этого можно использовать маховик как накопитель энергии.

Оценим энергетические возможности маховика. Кинетическая энергия вращения равна

где J – момент инерции маховика относительно оси вращения, ω – угловая скорость. Пусть для примера, маховик имеет форму кольца с моментом инерции J = m R 2 . Кольцо соединяется со ступицей вала, например спицами, масса которых сравнительно невелика (рис. 11.3).

Определим наибольшую скорость вращения без разрыва кольца центробежными силами. В сечении кольца центробежные силы вы-зывают силы растяжения. Для их определения вырежем мысленно из кольца малый элемент длиной dl = Rdα. Рассмотрим равновесие элемента кольца. На него в системе отсчета "кольцо" действует центробежная сила инерции dF цб = dm ω 2 R. Масса элемента равна произведению плотности материала ρ на объем: dm = ρ S R dα . Здесь S – площадь сечения. Тогда величина центробежной силы, действующей на элемент, будет равна dF цб = ρ S ω 2 R 2 dα.

Со стороны кольца в сечении разрезов на элемент действуют две одинаковые по величине силы растяжения: F 1 и F 2 . По условию равновесия сумма сил должна быть равна нулю: Из треугольника сил (рис. 12.3).. Подставив формулу центробежной силы, получим силу, разрывающую кольцо

F = ρ S R 2 ω 2 . (11.7)

Напряжения растяжения не должны превышать предела прочности материала . Откуда предельная допустимая скорость вращения маховика будет равна

(11.8)

Подставив предельное значение угловой скорости вращения в формулу кинетической энергии маховика, получим величину энергии, которую может запасти вращающийся маховик без опасности разрыва

. (11.9)

Например, механическая энергия электропоезда массой 200 т, при начальной скорости V = 15 м/с, будет 22,5 МДж. Тогда объем стального маховика с допустимым напряжением σ пр = 0,5∙10 9 Н/м 2 . Не так уж много.

Задачи

1. При рекуперативном торможении поезда массой 360 т для обеспечения равномерного движения на спуске высотой 5 м энергия запасается в маховике в форме диска массой 1,0 т и радиусом 1 м. Определить скорость вращения маховика в конце спуска. Потерями на трение пренебречь.

2. К шкиву тягового двигателя, установленного на стенде, прижата тормозная колодка с силой 1,0 кН. Определить мощность двигателя при частоте вращения 1200 об/мин, если диаметр шкива 0,20 м, коэффициент трения скольжения 0,20.

3. Определить, во сколько раз отличается кинетическая энергия вагона массой 40 т с учетом и без учета энергии вращения колес. Масса колес 1800 кг, их радиус 0,51 м. Колеса считать однородными дисками.

4. Колесная пара массой 1400 кг закатывается со скоростью 1 м/с на подъем с уклоном 0,010. Определить кинетическую энергию, если колеса считать дисками. Какой путь пройдет колесная пара, если коэффициент трения качения 0,005? Определить силу сцепления колес с рельсами.

5. Определить, какой дополнительный путь мог бы проехать моторный вагон массой 40 т при скорости 10 м/с, если еще учесть кинетическую энергию якоря электродвигателя с моментом инерции 50 кг м 2 . Передаточное отношение редуктора 5,2. Коэффициент сопротивления 0,003.Диаметр колес 1,02 м.

6. С какой скоростью скатится порожний вагон массой 20 т с сортировочной горки высотой 2 м и длиной 120 м, если масса всех колес 6 т. Коэффициент сопротивления 0,002. Колеса считать дисками диаметром 1,02 м.

7. Колесная пара скатывается с горки высотой 0,50 м и длиной 15 м. Какую скорость приобретут колеса в конце спуска? Коэффициент сопротивления 0,004. Определить величину и направление силы сцепления. Колеса считать однородными дисками.


12. ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА

Значение момента импульса в механике обусловлено тем, что наряду с импульсом и энергией он обладает свойством сохраняться в замкнутых системах тел.

Момент импульса

По определению, момент импульса материальной точки это вектор, равный векторному произведению радиус-вектора точки на вектор импульса:

. (12.1)

Выведем формулу момента импульса твердого тела при вращении вокруг неподвижной оси. Пусть твердое тело вращается относительно неподвижной оси. Траектории всех точек тела являются концентрическими окружностями. Для какой-то точки при скорости , момент импульса равен Раскрыв двойное векторное произведение, получим . Произведем суммирование моментов импульсов всех точек тела: . По определению сумма произведений масс частиц тела на квадраты их расстояний до оси вращения является моментом инерции тела J. Тогда момент импульса твердого тела относительно неподвижной оси вращения равен произведению момента инерции тела на угловую скорость :

. (12.2)

Момент импульса как и угловая скорость это аксиальный вектор, направление которого, определяется правилом буравчика. Если вращать вместе с телом ручки буравчика, то поступательное движение буравчика совпадает с направлением вектора момента импульса вдоль оси вращения.

Гиробус - особый вид троллейбуса, движущийся за счёт кинетической энергии вращающегося маховика. В настоящее время гиробусы не используются, хотя концепт гиробуса является объектом научно-технических изысканий. Давайте попробуем разобраться в этой теме подробнее. Сначала вспомним, с чего все начиналось.

По заказу швейцарской фирмы «Эрликон» Леонард Билл разработал в 1945 году проект маховичного автобуса, или, как его еще называли, гиробуса. Пять лет спустя был построен его опытный образец, а еще через три года в Цюрихе открылась первая транспортная линия, обслуживаемая новыми машинами. Гиробус был разработан как альтернатива для аккумуляторных автобусов, которые задумывались как альтернатива троллейбусам на тех маршрутах, где строительство контактной сети не было оправдано. Гиробус имел длину чуть более 10 м, массу 9600 кг и вмещал 70 человек. Под полом салона, между осями, располагался полуторатонный диск диаметром 1,63 м. Он был изготовлен из стали и помещен в контейнер с низким давлением для уменьшения трения. Но все равно каждые 800 м автобус вынужден был останавливаться для подзарядки. Три штанги, установленные на крыше, поднимались к контактам трехфазного источника тока напряжением 440-550 В. Напряжение подавалось к двухполюсному асинхронному электродвигателю, который и раскручивал маховик до рабочей скорости 2100-2900 об/мин. На зарядку уходило от 40 до 80 с. Гиробус трогался с места и благодаря хорошей приемистости за несколько секунд разгонялся до скорости 60 км/ч. Разгонный электродвигатель при этом автоматически переходил в режим генератора, от которого питался тяговый электромотор. «Маховоз» Билла имел 6 скоростей. КПД его был довольно высок - 70%. И все-таки, несмотря на явные преимущества (экологичность, дешевизна, бесшумность), в 1960 году эксплуатация гиробусов была прекращена. Причина - сложность управления и недовольство пассажиров частыми остановками. Гиробус или жиробус (образовано от греческого корня gyros - круг, оборот и новолатинизма omnibus - омнибус) - особый вид троллейбуса, движущийся за счёт кинетической энергии вращающегося маховика. В настоящее время гиробусы не используются, хотя концепт гиробуса является объектом научно-технических изысканий.

Эксплуатация в Швейцарии. Полноценная коммерческая эксплуатация гиробуса началась в октябре 1953 года. Этот маршрут соединял швейцарские коммуны Ивердон-ле-Бан и Грандсон. Однако он имел ограниченный пассажиропоток, и в 1960 году движение гиробусов там было закрыто по экономическим причинам (хотя с технической точки зрения опыт применения гиробусов на этом маршруте был успешным). Ни один из использовавшихся на швейцарском маршруте гиробусов не сохранился, как не сохранился и опытный, демонстрационный экземпляр. Эксплуатация в Бельгийском Конго. Вторая гиробусная система была открыта в Леопольдвиле (ныне Киншаса, тогда столица колонии Бельгийское Конго, ныне - Демократическая Республика Конго). В Конго в 1955-1956 годах использовалось двенадцать гиробусов (хотя некоторые источники ошибочно сообщают, что гиробусов было семнадцать), которые обслуживали четыре маршрута. Заправочные станции располагались через каждые два километра. Использовавшиеся в Киншасе гиробусы были самыми большими гиробусами из когда-либо существовавших: они имели 10,4 метров в длину, весили 10,9 тонн и вмещали до 90 пассажиров. Их максимальная скорость составляла 90 километров в час. Однако гиробусы в Конго быстро изнашивались. Вполне вероятно, что это было связано с привычкой водителей «сокращать» маршрут по дорогам без покрытия, которые превращались в настоящие болота после дождя. Другими проблемами были поломки подшипников маховика и высокая влажность, которая приводила к перегрузке мотора. Однако закрытие системы было вызвано высоким потреблением энергии. Фирма-эксплуататор сочла, что расход энергии слишком высок (он составлял 3,4 кВт/ч на километр для одного гиробуса). Движение гиробусов в Конго прекратилось летом 1959 года. Ставшие ненужными гиробусы были брошены ржаветь рядом с гаражом.

Эксплуатация в Бельгии. Третья и последняя гиробусная транспортная система имелась в Бельгии. Она состояла из одного маршрута (Gent Zuid-Merelbeke Molenhoek) и соединяла город Гент с его предместьем Мерелбеке. Эксплуатировало эту линию Национальное Общество Местных Железных Дорог (оно занималось эксплуатацией междугородных трамваев и автобусов). Подвижной состав состоял из трёх гиробусов, получивших обозначения G1, G2, G3. Для питания гиробусов использовалось напряжение в 380 вольт/50 герц. Гиробусное движение открылось 10 сентября 1956 года, однако просуществовало оно недолго, до 24 ноября 1959 года. Имелось несколько причин прекращения использования гиробуса в Бельгии. Прежде всего он отличался высоким потреблением энергии - 2,9 кВт·ч/км, в то время как трамвай, перевозящий большее (в несколько раз) число пассажиров расходовал 2-2,4 кВт·ч энергии на километр пути. Кроме того, гиробусы были признаны ненадёжными, к тому же на «заправку» уходило непозволительно много времени. Ко всему прочему, из-за большого веса (из-за тяжёлого маховика) гиробус повреждал дороги. Один из гентских гиробусов, G3, был сохранён. Его иногда демонстрируют на различных выставках и других подобных мероприятиях. Сейчас этот гиробус хранится во Фламандском музее трамваев и автобусов в Антверпене.

Почему этой темой решили заниматься в свое время? Все дело в существенных преимуществах такой конструкции. Во первых она практически бесшумна, во вторых намного экономичнее обычного двигателя внутреннего сгорания, в третьих этот вид транспорта экологически чистый, а в четвертых позволяет обойтись без контактной сети и рельсов как например на троллейбусах и трамваях. Электромотор, разгонявший маховик, получал энергию через три короткие штанги (мотор был трёхфазным), установленные на крыше гиробуса. Электродвигатель включался только эпизодически. Для этого вдоль маршрута следования гиробуса оборудовались «заправочные пункты» (обычно на некоторых остановках). На этих пунктах штанги гиробуса поднимались и прикасались к установленным над остановкой контактам трёхфазной электрической сети. После разгона маховика до нужных оборотов штанги опускались, двигатель выключался, и гиробус следовал до следующей «заправки».

Запас хода на одной заправке примерно 6 км, но для обеспечивания надежности системы гиробус заправлялся каждые 2км пути. С такой установкой гиробус разгонялся до 50-60км/час. Тормоза здесь тоже были электрические, энергия от торможения позволяла маховику покрутиться еще дольше т.е. имело место рекуперация. «Заправка» гиробуса занимала от 30 секунд до 3 минут. Для уменьшения времени заправки напряжение в сети было поднято с первоначальных 380 вольт до 500. Самое удивительное в том что в среднего размера гиробусе применяется трехтонный маховик линейная скорость обода которого достигает 900 км/час.

Преимущества: Бесшумный ход Экологически чистый Не требует непрерывной контактной сети (в отличие от троллейбуса) Возможность гибко изменять маршрутную сеть в случае необходимости. Недостатки: Большой вес - гиробус, предназначенный для перевозки 20 человек на 20 километров, должен иметь маховик массой в 3 тонны Вращающийся со скоростью в 3000 оборотов в минуту маховик требует особых мер безопасности (линейная скорость обода маховика достигает 900 километров в час) Управлять гиробусом сложно, так как его маховик обладает свойствами гироскопа (стремится сохранять неизменное положение в пространстве).

Век гиробусов оказался недолгим - в 60-ых годах все системы гиробусного транспорта были закрыты.

иробус G3 - единственный в мире сохранившийся гиробус. Хранится во Фламандском музее трамваев и автобусов в Антверпене.

Несмотря на неудачи, развитие гиробуса не прекратилось полностью. В 1979 году компания «Дженерал Электрик» (США) заключила с департаментом энергии правительства США четырёхлетний контракт (стоимостью в пять миллионов долларов) на развитие прототипа автобуса с маховиком. В 1980 году компания «Вольво» проводила эксперименты с маховиком, разгоняемым дизельным двигателем и используемым для рекуперации тормозной энергии. Впоследствии от этого проекта отказались в пользу гидравлических аккумуляторов. В 2005 году Center for Transportation and the Environment (центр транспорта и окружающей среды), работая совместно с Университетом Техаса в Остине, Центром электромеханики (Center for Electromechanics), Test Devices, Inc., и DRS начал поиски спонсора для финансирования разработки прототипа нового гиробуса. Сейчас в гибридном общественно транспорте, да и не только в общественном а и в болидах формулы 1 для рекуперации энергии торможения используется супер маховики которые имеют относительно небольшой вес и разгоняются до очень больших скоростей. Сам маховик как аккумулятор энергии имеет очень высокий КПД, вот если бы не трение воздуха и трение в подшипниках так вообще было бы кпд 99.99% так как известно из школьного курса физики ничего не может иметь КПД больше 100%. Кстати, по соотношению накопленных ватт легко переигрывает все типы существующие на сегодняшний день аккумуляторов. Интересный факт, энергия, запасаемая в его маховиках на единицу массы, превышает энергию тротила. А вот применение маховика в "Формуле-1" В 2007 году Джон Хилтон и Даг Кросс, основатели Flybrid, заявили о создании уникального компактного маховика массой около 5 кг, способного вращаться со скоростью до 64 000 об/мин. Стальная болванка, в разрезе похожая на двояковогнутую линзу, одетая в прочнейшую рубашку из карбона, была помещена ими в вакуумный корпус. Вал маховика установлен на специальных керамических подшипниках. Коренной компонент маховика Flybrid - патентованная система вращающихся центробежных уплотнений, обеспечивающих герметичность узла. Зачем тут вакуум? Элементарно: трение воздуха, кажущееся нам неощутимым, на таких скоростях приводит к нагреванию и постепенному разрушению маховика. Постепенное торможение болванки происходит в основном из-за трения в опорных подшипниках и системе прокладок. Раскрученный маховик за минуту теряет лишь 2% сохраненной энергии. Полная разрядка этой механической батареи наступает примерно через полчаса.

«Наш маховик как минимум втрое быстрее любого аналога, когда-либо установленного в автомобилях, - скорость вращения его внешней кромки достигает 660 м/с, что в два раза превосходит скорость звука в воздухе при нормальных условиях, - говорит Джон Хилтон. - Это позволило сделать его в девять раз меньше и легче. По габаритам он сопоставим с обычными дополнительными агрегатами, находящимися под капотом легковушек. Это полноценная гибридная система размером со штатный аккумулятор». Конечно, вряд ли на рулевом колесе легкового автомобиля появится красная кнопка Boost - система будет работать в автоматическом режиме. Традиционные гибриды не способны обеспечить высокую динамику из-за ограниченной производительности батарей, а в маховиковых системах накопленная энергия может быть использована почти мгновенно. При этом владелец получает еще и 30%-ную экономию топлива за счет возросшего КПД. Кроме того, механическая KERS впятеро дешевле электромеханической, надежна при любых температурах и выдерживает миллионы циклов разряда. Литий-ионная батарея используется лишь на 80% номинальной емкости - компьютер не допускает разряда более 80%, так как при полном разряде батарея выходит из строя. Маховик же можно разряжать до нуля. Безопасность маховика многократно проверена в серии краш-тестов - карбоновая рубашка не дает кускам стали разорвать корпус даже на самых высоких оборотах.

Вакуум взаперти . Слабое звено KERS Хилтона и Кросса - патентованные центробежные прокладки вала маховика. На предельных скоростях вращения в них возникает микроскопический зазор, и для откачки воздуха требуется дополнительный вакуумный насос с блоком контроля и управления. Инженеры Ricardo радикально пересмотрели конструкцию Flybrid и создали полностью герметичный модуль с поистине уникальной технологией передачи потока мощности под названием Kinergy. Базовый элемент Kinergy - бесконтактная магнитная муфта. Для Kinergy не требуется вакуумный насос и сложнейший в изготовлении комплекс прокладок вала. Энергия вращения колес поступает на маховик, а затем обратно на трансмиссию благодаря магнитной индукции, а не зубчатому или ременному зацеплению. Причем магниты здесь - постоянные. Намагниченный маховик стоит на двух подшипниках из стали и керамики, не требующих замены в течение всего срока эксплуатации узла. Для ликвидации возможного проникновения паров воды внутрь корпуса и постепенного разрушения подшипников инженеры Ricardo применяют адсорбирующий элемент с большой удельной емкостью, который поглощает все жидкости и газы, кроме водорода. По словам эксперта компании Ricardo Энди Аткинса, KERS на основе технологии Kinergy выдерживает не менее 10 млн циклов разряда, обладает удельной мощностью в 3 кВт на килограмм веса, а ее удельная энергоемкость равна 32,5 кДж на килограмм. Стоимость гибридной системы Kinergy для легкового автомобиля среднего класса составит не более $1300. Kinergy может применяться также в качестве идеальной трансмиссии для автомобилей - в сравнении с популярной ныне преселективной механикой маховик с магнитной муфтой на 20% экономичнее. Маховик, сэр! Эффективность и дешевизна Kinergy понравились автокомпаниям. В настоящее время уже начались испытания этой системы на прототипе Jaguar XJ следующего поколения и на знаменитых лондонских даблдеккерах. По словам Криса Боркбэнка, технолога компании Torotrak, стратегического партнера Ricardo, расход топлива двухэтажных автобусов снижается при этом почти на 30%. Потеря энергии на маховике в данном случае не является критическим фактором - средняя продолжительность остановки автобуса в Лондоне не превышает 55 с. Как считает Энди Аткинс, диапазон применения Kinergy огромен - любые нагруженные механические системы, работающие в условиях знакопеременных потоков мощности, будут на 20-30% более эффективны с новыми маховиками, чем без них. Локомотивы, трамваи, экскаваторы, горнодобывающая техника, краны, электростанции и многое другое - для Kinergy везде найдется достойное применение. Гоночные автомобили F1 - не исключение. Как знать - может быть, вскоре на штурвалах стремительных болидов вновь появится Большая Красная Кнопка? Опасность разрушения маховиков принято считать одним из проблемных факторов механических KERS. Но, по мнению его создателя Джона Хилтона, это не более чем миф. Еще в 2007 году компания Flybrid провела серию успешных тестов в знаменитом краш-центре F1 Кранфилд. Инженеры Центра смоделировали реальную аварийную ситуацию на трассе. Маховик был раскручен на стенде до предельной скорости 64 500 оборотов в минуту внутри макета гоночного болида, который затем разбили о неподвижное препятствие. Замедление составило более 20 g. Осмотр узла показал, что вакуумный корпус и сам маховик после удара абсолютно не пострадали. Более того, маховик продолжал вращение на скорости более 60 000 оборотов!

Механическая KERS по эффективности вдвое превосходит традиционную электромеханическую - она усваивает до 70% энергии торможения против 35%. В серийных гибридах кинетическая энергия превращается в электрическую, а затем - обратно. Маховику же не требуется конвертировать полученные джоули. С другой стороны, при необходимости маховик можно подключить к стартер-генератору. Такой вариант KERS мощностью 60 кВт и массой 27 кг был создан Хилтоном и Кроссом в кооперации с итальянской Magneti-Marelli. Излишки энергии запасаются в литий-ионной батарее. Естественно, при этом существенно падает КПД, зато время хранения не ограничивается затуханием вращения маховика. В стальную поверхность деталей интегрирован магнитный неодимовый порошок и более крупные упорядоченные постоянные магниты, скрепленные прочнейшей эпоксидной смолой. Вращение маховика вызывает разнонаправленное вращение внешнего ротора муфты, соединенного с тороидальным вариатором Torotrak с передаточным числом от 10:1 до 1:1. Для достижения максимальной эффективности бесконтактного зацепления стенку корпуса маховика пришлось сделать чрезвычайно тонкой - зазор между двумя вращающимися элементами муфты составляет всего 2 мм. По заявлению разработчиков, КПД магнитной передачи необычайно высок - 99,9%.

Британцы создали автобус с маховичным накопителем

Моделирование показало, что с новой системой автобус должен экономить более 10% топлива, а выбросы углекислого газа должны быть ниже примерно на 20%. Как всё сложится на практике, можно будет узнать только после тестов, к которым партнёры по проекту ныне и приступили. Инжиниринговая компания Ricardo и разработчик тороидальной бесступенчатой трансмиссии - компания Torotrak (обе с Туманного Альбиона), американский специалист по автоматическим коробкам передач Allison Transmission и британский производитель автобусов Optare построили гибридный автомобиль необычного типа. В то время как большинство компаний экспериментирует с гибридами, оснащёнными электромоторами и аккумуляторами, система рекуперации энергии в системе, названной Flybus, чисто механическая. При торможении кинетическая энергия автобуса передаётся через тороидальный вариатор и магнитную муфту на маховик из углеродного композита, помещённый в вакуумированный корпус (для снижения потерь). По мере замедления автобуса маховик раскручивается до 60 тысяч оборотов в минуту. При разгоне всё происходит в обратном порядке - маховик отдаёт свою энергию машине.

Вариатор Torotrak, сравнительно компактный и лёгкий, но при этом способный передавать в ту или иную сторону до 60 кВт мощности, а также маховичный накопитель Kinergy от Ricardo явились ключом ко всему проекту, занявшему несколько лет. Теперь система собрана и установлена на автобус Optare Solo Midibus.

"Flybus является следующим этапом в эволюции гибридных автобусов и технических решений, которые помогают снизить расход топлива и выбросы CO2, пишет PhysOrg.com. – При этом основной проблемой стандартных гибридов является цена". Именно из-за цены всё и затевалось. Ricardo заявляет, что система Flybus должна стоить лишь малую долю от электрической гибридной системы для автобусов.

Маховики разгоняют вагоны на зелёных линиях

Гибридный привод на транспорте продолжает наступление. Даже на железной дороге он завоёвывает, пока ещё, узкие ниши. Но, как показывают последние события, перспективы у поездов-гибридов - замечательные. Особенно если эти гибриды сделаны на удивление дешёвыми и простыми. Министерство транспорта Великобритании (Department for Transport) предоставило компании Govia франшизу на эксплуатацию ряда пассажирских железнодорожных линий в Западном Мидленде. Это заурядное событие из мира бизнеса нас не заинтересовало бы, если б не одно обстоятельство: на одну из небольших своих линий компания Govia намерена вывести пассажирские поезда, работающие на маховиках. Созданная в 1992 году фирма сосредоточила своё внимание на поездах с гибридным приводом. Но поскольку не то что передовые литий-ионные или никель-кадмиевые, но даже и простые свинцово-кислотные батареи, в количестве, достаточном для самоходного вагона (по запасу энергии и отдаваемой пиковой мощности), - стоят очень дорого, британские инженеры решили применить для накопления энергии маховики. Причём не стали ломать себе голову супермаховиками со сверхпрочными углеволоконными дисками, намотанными из нитей или лент. Тоже, заметим, - удовольствие не дешёвое. Нет, специалисты Parry People Movers, не мудрствуя лукаво, затолкали под пол своих вагонов 500-килограммовые стальные «блины» диаметром 1 метр. И позволили им раскручиваться до 2,6 тысячи оборотов в минуту.

И знаете, получилось эффективно. К настоящему моменту компания построила 12 таких маховичных аппаратов (разные образцы имеют вместимость от 2 до 80 человек). Эти мотовагоны даже выходили (в виде опытов) на небольшие местные линии в разных частях Британии и успешно перевозили пассажиров. Тысячи часов и 100 тысяч суммарно перевезённых человек показали 99-процентную надёжность (под которой подразумевается не только отсутствие поломок, но и опозданий). А экология? К примеру, на испытаниях, прошедших с декабря 2005-го по декабрь 2006-го, было подсчитано, что эмиссия углекислого газа у маховичных мини-поездов на 80% меньше, чем у обычных дизельных мотовагонов, которые возят пассажиров на тех же самых линиях с теми же скоростями (соответственно улучшилась и экономичность).

Теперь Govia выведет пару таких вагонов на одну из линий, где поезда-гибриды будут возить пассажиров как минимум до 2015-го (на такой срок компании выдана франшиза на пассажирские перевозки в данном районе «от имени» министерства транспорта). Потому следует поближе познакомиться с конструкцией экзотических вагонов. Прежде всего, следует сказать, что обычный ДВС в них тоже имеется. Это серийные двигатели от легковушек или небольших грузовиков. В той модели, что вскоре выйдет на рельсы в Западном Мидленде (а она называется PPM 60, соответственно, рассчитана на 60 пассажиров максимум - 25 сидят, остальные - стоят), использован экономичный 2-литровый дизель. Но предусмотрены варианты: можно заказать модель с ДВС, работающим на пропане. ДВС раскручивает маховик через ременную трансмиссию со сцеплением. Маховик же связан с ведущей осью трансмиссией гидростатической. Зачем такие сложности? Дело в том, что так было проще организовать рекуперативное торможение, когда маховик разгоняется от колёс, через ту же «гидростатику». А именно за счёт рекуперации такой вагон оказывается намного экономичнее обычного. Ведь у поезда на короткой линии очень рваный режим работы - то разгон, то остановка. Интересно, что поезд может останавливаться исключительно за счёт рекуперации - разгона маховика, при этом развивается замедление в 1 м/с2. Обычные тормоза также могут быть задействованы, если потребуется аварийная остановка. Максимальная скорость PPM 60, кстати, составляет 65 километров в час. Но это не всё. В разных моделях компании применены разные маховики. 500-килограммовый - это базовый. Но можно поставить маховик побольше - 750 килограммов и 1,2 метра в диаметре. Зачем он нужен? Тут начинается самое интересное. Помимо привода от ДВС, к маховику-накопителю подключён 20-киловаттный электромотор. Если станции линии оборудованы специальными розетками - запускать ДВС машинистам PPM и вовсе не придётся. Всего за 30 секунд стоянки у очередной платформы электромотор раскручивает маховик настолько, что одного этого запаса энергии хватает для пробега вагона в 800 метров - как раз до следующей станции, где PPM снова включается в розетку. В этом случае эксплуатация линии, над которой не протянуты провода, становится схожей с эксплуатацией линии электрифицированной. Даже лучше. Поскольку расход энергии - небольшой, а в случае аварии в сети есть возможность перейти на солярку или сжиженный газ. Или можно как-то комбинировать использование ДВС и электричества из розетки, оптимизируя свои расходы.

Британская компания пишет, что на одном галлоне топлива (имперском, очевидно - это примерно 4,5 литра) простой дизельный мотор-вагон, везущий 50 человек, проедет 3,2 километра, обычный междугородний автобус - 11,3 километра, а поезд PPM 50 - 24,1 километра (без подзарядок от сети). Выбор очевиден. Единственное, что может огорчить изобретателей PPM, - эту симпатичную технологию трудно адаптировать к большим поездам, работающим на длинных линиях. Ведь в этом случае придётся под полом каждого вагона монтировать эдак по пять, а то и по семь 750-килограммовых маховиков и все их соединять гидравлической трансмиссией с ведущими осями. Впрочем, небольшие вагоны PPM показали, что технология эта прекрасно работает. И кто знает, не попробуют ли когда-нибудь инженеры замахнуться на маховичный скорый?

Если позволите каплю эмоций, я не перестаю удивляться, какие страсти разгораются каждый раз, когда разговор в этой колонке заходит о «чистой энергии». Накал прошлонедельной дискуссии об эффективности солнечных батарей (см. « ») оказался таким, что, посмотрев со стороны, можно подумать, будто обсуждают большую политику или как минимум сравнивают операционные системы! И лично для меня это лучшее доказательство того, что тема только кажется отработанной и устоявшейся, а на самом деле даже по элементарным вроде бы вопросам (вроде практической пригодности солнечных батарей в облачную погоду) существуют диаметрально противоположные точки зрения. Так что если у вас есть чем крыть, есть цифры, а тем более личный опыт, очень прошу поучаствовать в новой дискуссии. Потому что сегодня я рискну продолжить начатый в две прошедших недели разговор. Ведь энергию Солнца или ветра мало получить, её мало распределить по потребителям, её ещё жизненно важно научиться накапливать!

В самом деле, что проку от той же трёхкиловаттной икеевской солнечной электростанции, занимающей крышу частного дома, если она, способная с избытком удовлетворить потребности целого домохозяйства, работает только в светлое время суток? Идеально было бы накапливать остающийся во время генерации излишек («скушать» три киловатта - не шутка, мало какой бытовой прибор поглощает даже киловатт, и работают такие приборы, как правило, недолго: проточный нагреватель воды, духовка… У меня, правда, греет дом полуторакиловаттный биткойновый риг, но это редкость, согласитесь) и отдавать его по мере надобности ночью. Что ж, предположим, на ночь и сумерки, занимающие, скажем, 18 часов, дому нужны те же самые три киловатта. Значит, бытовой накопитель электроэнергии должен запасти, грубо, 54 киловатт-часа. Много это или мало?

Нормально. И решение этой проблемы «в лоб», установкой электрического аккумулятора приемлемых габаритов и эксплуатационных свойств, то есть литий-ионного, уже возможно. Больше того, выпускаются серийные образцы аккумуляторных батарей именно такой ёмкости: это батареи электромобилей – к примеру, знакомого вам Model S от Tesla Motors, базовая комплектация которого включает батарею с ёмкостью 60 кВт ч. Одна проблема: стоит такое решение 10 тысяч американских долларов, то есть дороже всей солнечной электростанции от той же IKEA. И ценам Элона Маска можно верить: они хоть и собирают свои батареи из чужих элементов (основу производит Panasonic), но используют их не только в автомобилях, а и на бытовых солнечных электростанциях, устанавливаемых компанией Solar City ( , входит в число крупнейших установщиков солнечных батарей в США). Поскольку спроса на такие батареи, естественно, нет, Solar City пока ограничивается установкой сравнительно небольших аккумуляторов, способных поддержать базовые электропотребности среднего дома лишь на время кратковременных перебоев энергоснабжения.

Но это ещё не все плохие новости. Цифра, которую мы получили выше, можно сказать, обывательская. А профессионалы говорят так: запас энергии в доме должен быть минимум на три (облачных) дня, а лучше – на пять (тогда аккумуляторы прослужат дольше)! Так что в существующем виде электрические аккумуляторы неприемлемы даже для домашних нужд, не говоря уже о мощных электростанциях. Но как же быть? И как выкручиваются проектировщики больших энергогенерирующих объектов?

Чтобы ответить на этот вопрос, достаточно посмотреть на вводимые в строй суперсовременные «чистые» электростанции. Скажем, на стартовавшую на днях в Штатах станцию Solana - занимающую площадь в несколько квадратных километров и самую мощную на планете (280 МВт, 70 тысяч среднестатистических домохозяйств). Так вот: никакого нанотеха, никаких чудес электрохимии. Всё просто: часть собранного солнечного тепла пускают на нагрев здоровенного резервуара с расплавом соли (некоторые соли, скажем, глауберова, твёрдые в охлаждённом состоянии, переходят в жидкую форму при нагревании), и ночью возвращаемое солью тепло нагревает воду до пара и крутит турбину. И вот это решение (точнее, его масштабы) называют «поворотной точкой для солнечной энергетики»! Вот он, пик чистых технологий XXI века: солевая грелка за два миллиарда долларов!


Это и смешно, и грустно одновременно. Смешно - потому что в задаче аккумуляции энергии мы никак не уйдём от технологий столетней давности. Грустно - потому что решение этой задачи, насколько мне известно, существует давно, а честь открытия и разработки принадлежит нашему соотечественнику. Называется оно странным словом «супермаховик».

Должен предупредить сразу: описывая это творение инженерной мысли, я не могу быть абсолютно объективным. Потому что книга про супермаховик попала в мои руки, когда мне было что-то около десяти лет, и стала одним из кирпичиков, на которых и сформировалось моя любовь к технике. Поэтому ещё раз повторю, что буду рад любым доводам и аргументам. Но - к сути. В далёком 1986 году издательство «Детская литература» (!) выпустило книгу советского изобретателя Нурбея Гулиа «В поисках “энергетической капсулы”» (её копия, как раритетного издания, есть в Сети). С юмором и очень просто Гулиа описывает в ней своё становление инженера (так решили его знакомые: мол, если других талантов нет, дорога одна!) и выход на задачу, которая стала главной в его жизни. Это задача аккумуляции энергии - уже тогда, тридцать лет назад, стоявшая в полный рост. Перебрав механические, термические, электрические, химические решения, заглянув в то, что вскоре станет нанотехнологиями, Гулиа отверг их все по тем или иным причинам - и остановился на идее, известной с древности: массивном вращающемся теле, маховике.

Мы находим маховик везде, от гончарного круга и примитивных водяных насосов до транспортных средств XX века и космических гироскопов. Как аккумулятор энергии он замечателен тем, что его можно быстро разогнать («зарядить») и быстро же остановить (получив значительную мощность «на выходе»). Одна проблема: энергоёмкость его недостаточна, чтобы претендовать на роль универсальной «энергетической капсулы». Плотность запасаемой энергии необходимо увеличить хотя бы в сотню раз. Но как это сделать? Увеличим скорость - маховик разорвёт и запасённая энергия причинит страшные разрушения. Наращивать габариты тоже не всегда возможно. Пропуская многолетний, интереснейший пласт исследований и размышлений (очень рекомендую книгу, читается и сегодня совершенно современно!), собственно вклад Гулиа можно свести к следующему: он предложил делать маховик не монолитным, а навивать - например, из стального троса или ленты. Возрастает прочность, низводятся до ничтожных последствия разрыва, а энергоёмкость даже самодельных образцов превышает параметры промышленных разработок. Эту конструкцию он и назвал супермаховиком (и запатентовал один из первых вариантов ещё в 1964-м).

Прорабатывая идею, он пришёл к мысли навивать маховик из графитового волокна (не забывайте, что фуллерены тогда только получили, а о графене и речи не шло), а то и более экзотических материалов вроде азота. Но даже 20-килограммовый супермаховик из углеродных волокон, технически возможный уже тогда, тридцать лет назад, был способен запасти энергию, достаточную для передвижения легкового автомобиля на 500 километров, со средней стоимостью стокилометрового броска в 60 американских центов.


В случае с супермаховиками нет смысла возиться со сравнительными оценками - будь то запасаемая на единицу массы энергия или эксплуатационные характеристики: теоретически они превосходят все имеющиеся альтернативные решения. И области применения напрашивались сами собой. Помещённый в вакуум, на магнитной подвеске, с КПД выше 90%, выдерживающий невообразимое число циклов заряда-разряда, способный работать в широчайших диапазонах температур, супермаховик способен вращаться годами и обещал фантастические вещи: автомобиль от одной зарядки мог бы бегать тысячи километров, а то и весь срок службы, электростанция с упрятанным в фундамент многосотметровым супермаховиком запасала бы энергию, достаточную для освещения всей Земли, и так далее, и так далее. Но вот вопрос: прошло тридцать лет, почему мы же не видим супермаховиков вокруг себя?

Сказать по правде, я не знаю ответа. Технические сложности? Да, и конструкция супермаховика, и плавный отбор энергии - задачи с большой буквы, но они вроде бы решены. Время от времени слышно о мелких, узконишевых применениях. Но именно там, где на него возлагались главные надежды - в энергетике и автомобилестроении - супермаховик массового применения не нашёл. Пару лет назад американская компания Beacon Power ввела в строй небольшую супермаховичную энергоаккумулирующую станцию под Нью-Йорком, но сегодня о проекте ничего не слышно, а сама компания перебивается с хлеба на воду.

Нурбей Гулиа по-прежнему работает над совершенствованием своего детища и год назад отметился сообщением о возможности постройки графенового супермаховика (с расчётной удельной энергоёмкостью 1,2 кВт*ч/кг, то есть на порядок выше литий-ионных аккумуляторов). Но, если я правильно понимаю, коммерческого успеха он добился с другой своей разработкой (супервариатором, оригинальной механической передачей), а вот супермаховик почему-то остаётся под знаком вопроса.

P. S. Я попросил Нурбея Владимировича поучаствовать в дискуссии (хоть надежда, сами понимаете, слабая: на личном сайте его натурально одолевают поклонники).

Их не нужно будет в морозы заносить на ночь в тепло. Они будут гораздо дешевле обычных, ведь пластик дешевле цветных металлов. Срок их службы будет превышать срок службы самой машины. Заряжаться они будут от электродвигателей, от , от стационарных источников энергии.

Это инерциоиды, или маховики . Они накапливают энергию и потом по мере надобности отдают их потребителям. С большим маховиком и двигатель внутреннего сгорания не нужен. Энергию можно запасать и на энергозаправках, мощными электродвигателями разгоняя один или несколько маховиков. Они находятся в герметичном безвоздушном пространстве, и подвешены на мощных магнитах.

Их называют супермаховиками , так как они запасают энергии в тысячи раз больше обычных маховиков. Изобрёл их 50 лет назад русский учёный Н. Гулиа, но массово они не применялись. Только единичные кустарные разработки - тележки, заменявшие электрокары.

И вот теперь в промышленном масштабе это изобретение воспроизвели в Америке. Там супермаховики устанавливают в контейнеры по 17 тонн. И они могут запасать и отдавать энергию в 1,7 мегаватта! Они используются для стабилизации скачков напряжения энергосети. В России единая энергосистема не нуждается в таких стабилизаторах, так как работает по более надёжной схеме.

Однако если , строительстве, и везде, где необходимо, можно сэкономить почти половину используемой нефти и газа! Не будет необходимости прогревать холодные двигатели в зимнее время, просто сел и поехал.

Ветряки даже небольшой мощности могут давать большую мощность, запасая её в таких аккумуляторах энергии. Просто поменял маховик на автомобиле, или перезарядил - раскрутил остановившиеся маховики и опять можно ехать. Далеко и долго.

В сравнении с супермаховики выигрывают по всем показателям. Они долговечнее, проще и дешевле в изготовлении, и, что самое главное - экологически чище. И запасают гораздо большую энергию за в разы меньшее время. Также и отдают.

Ещё маховики могут отдавать мощность, не перенося инерцию на корпус. Например, электродрель большой мощности старается вырваться из рук за счёт инерции от сверла. Если вместо электромотора установить маховик - он будет сверлить с любой силой и чуть ли не сам держаться на заданном месте. Причём гироскопический эффект будет способствовать сверлению идеально ровного отверстия, как на станке. Раскрученный маховик дрели не даст её вибрировать в Ваших руках.

В-общем, ждут Вас невиданное энергетическое удобство и прочие блага цивилизации. Только вот кому - то сделать надо, ну или как всегда «оттуда» закупать придётся.

Действительно, раскрутил карусель, – и вертись себе по инерции. Если подшипники карусели хорошие, то это можно делать достаточно долго. Современные маховики в накопителях энергии вращаются без помощи мотора более недели. Чем не вращение по инерции? Более того, если «помогать» этому маховику мотором, то он будет вращаться с совершенно постоянной угловой скоростью. Можно ли это назвать вращением по инерции?

Строго говоря, нет. Мы же раскритиковали Галилея, который именно движение точки по кругу считал инерционным. Но это потому, что на точку в этом случае должна обязательно действовать внешняя сила. А тогда движение уже не инерционное.

Поступим хитрее – возьмем много точек, расположенных по кругу, скрепим их друг с другом покрепче и раскрутим. Вот мы и получили маховик, который вращается, заметьте, без приложения внешних сил (мы его не трогаем!). Поместим такой маховик в космическое пространство – не понадобится ни подвес, ни мотор. Предмет сам собой вращается, никаких сил не требует.

Отвечайте, коллеги-физики, – по инерции он движется или нет?

Вопрос, казалось бы, для школьника, но боюсь, что он станет проблемой и для специалиста-физика.

Ответ первый:

– Да он вообще не движется, центр его масс, который находится на оси, неподвижен, стало быть, маховик неподвижен!

– Нет, – не согласимся мы, – а как же его кинетическая энергия? Может ли неподвижное тело обладать кинетической энергией и немалой?

Второй ответ:

– Это движение по инерции, потому что оно происходит без какого-либо внешнего воздействия!

– Позвольте, – возразим мы, – но такое движение согласно первому закону Ньютона может быть только прямолинейным и равномерным. Может, Ньютон чего-нибудь не учел?

Все учел Ньютон, просто вопрос не так уж тривиален, как может показаться сразу.

В чем различие между инерцией прямолинейного и вращательного движения?

Как известно, инерция, или инертность, массивной точки зависит только от ее массы. Масса является мерой инертности тела при прямолинейном движении. Значит, при таком движении на инерцию не влияет распределение масс в теле, и это тело можно смело принять за материальную (массивную) точку. Масса этой точки равна массе тела, а расположена она в центре тяжести, или, что почти то же, в центре масс, или центре инерции тела (поэтому «тело» в законах Ньютона справедливо заменено «материальной точкой»).

Проведем следующий опыт. Попытаемся вращать вокруг вертикальной оси стержень с насаженными на него массами (грузами), например, металлическими шарами. Пока эти шары находятся близ центра, раскрутить стержень легко, инертность его мала. Но если мы раздвинем массы на края стержня, то раскрутить такой стержень станет намного труднее, хотя масса его осталась без изменения (рис 52). Стало быть, инертность тела при вращении зависит не только от массы, но и (даже в большей степени) от распределения этих масс относительно оси вращения. Мерой инертности тела при вращении является так называемый момент инерции.


Рис. 52. Изменение момента инерции тела при неизменной его массе: 1 – стержень; 2 – груз

Моментом инерции тела относительно данной оси называется величина, равная сумме произведений масс всех частиц тела на квадраты их расстояний от этой оси.

Таким образом, разница в мере инертности прямолинейного движения и вращения состоит в том, что в первом случае она измеряется массой, а во втором – моментом инерции.

Далее. Как мы знаем, закон инерции устанавливает эквивалентность относительного покоя и равномерного прямолинейного движения – движения по инерции. Ибо нельзя никаким механическим опытом установить, покоится ли данное тело или движется равномерно и прямолинейно. Во вращательном движении это не так. Например, совсем не безразлично, покоится ли волчок или вращается равномерно, с постоянной угловой скоростью. Угловая скорость твердого тела является величиной, характеризующей его физическое состояние. Угловая скорость может быть определена (например, измерением центростремительных сил) без какой-либо информации о положении тела по отношению к «абсолютной» системе координат. То есть если даже вся Вселенная исчезнет, а останется только наше вращающееся тело, то мы и в этом случае узнаем его угловую скорость. Поэтому термин «абсолютная угловая скорость тела» в отличие от «абсолютной скорости точки» должен употребляться в прямом смысле (без кавычек).

Таким образом, механические явления в покоящейся и вращающейся системах будут протекать по-разному, не говоря уже о том, что падение и движение тел во вращающейся системе происходят иначе, чем в неподвижной: достаточно хорошенько ее раскрутить – и она развалится на части из-за возникших в ней напряжений.

Поэтому второе отличие состоит в том, что прямолинейное движение и покой эквивалентны, а вращение, даже с постоянной угловой скоростью, может быть четко отделено не только от покоя, но и от вращения с другой угловой скоростью.

Вот, пожалуй, и все основные отличия. Остальное настолько одинаково, что можно взять на себя смелость сформулировать по образу и подобию ньютоновых законов «закон» инерции вращательного движения абсолютно твердого тела: «Изолированное от внешних моментов абсолютно твердое тело будет сохранять состояние покоя или равномерного вращения вокруг неподвижной точки или оси до тех пор, пока приложенные к телу моменты внешних сил не заставят его изменить это состояние».

Почему же абсолютно твердое тело, а не любое? Потому что у нетвердого тела из-за вынужденных (или заранее предусмотренных) деформаций при вращении может измениться момент инерции, а это равносильно изменению массы тела в прямолинейном движении. Мы же не упоминаем этого случая, когда формулируем закон инерции, иначе он бы начинался так: «Изолированная от внешних воздействий материальная точка постоянной массы …» А эта точка может легко менять свою массу. Самолет или ракета, двигаясь за счет сжигания горючего, довольно существенно изменяют свою массу. Даже человек, пройдя достаточное расстояние, изменяет свою массу настолько, что это фиксируется медицинскими весами. А как отразится это изменение массы на инерции? Ведь при изменении массы возникает дополнительная, так называемая реактивная сила. О каком же движении по инерции может идти речь, когда на тело действует сила?

Так и в случае вращательного движения: если момент инерции непостоянен, приходится принимать постоянной не угловую скорость, а произведение угловой скорости на момент инерции – так называемый кинетический момент. В этом случае закон инерции примет такую форму: «Изолированное от внешних моментов относительно оси вращения тело будет сохранять кинетический момент относительно этой оси постоянным». Этот закон (в несколько иной формулировке) носит название закона сохранения кинетического момента.

Для демонстрации этого закона удобно воспользоваться простым прибором, называемым платформой (скамьей) Жуковского. Это круглая горизонтальная платформа на подшипниках, которая с малым трением может вращаться вокруг вертикальной оси (рис. 53). Если человек, стоя на этой платформе и вращаясь с некоторой угловой скоростью, разведет в сторону руки (еще лучше с грузами в них, например, гантелями), то его момент инерции относительно вертикальной оси повысится, а угловая скорость сильно упадет. Опуская руки, человек внутренним усилием сообщает себе первоначальную угловую скорость. Даже стоя на платформе неподвижно, можно повернуть корпус в любую сторону, вращая вытянутую вверх руку в противоположном направлении. Таким способом изменения угловой скорости широко пользуются в балете, акробатике и т. п., даже кошки успешно приземляются на лапы благодаря вращению хвоста в соответствующем направлении.


Рис. 53. Платформа Жуковского и человек

На явлении инерции вращательного движения основаны многочисленные приборы и машины, в частности, инерционные двигатели – аккумуляторы, сохраняющие кинетическую энергию при инерционном вращении маховика, и гироскопические приборы, сохраняющие, образно говоря, его кинетический момент. Существуют также и маховики переменного момента инерции, напоминающие по принципу действия человека на платформе Жуковского.

Реальны ли центробежные силы?

Мы уже знаем, что так называемые силы инерции, которые мы добавляем к реально действующим силам якобы для облегчения решения задач, на самом деле не существуют. Слово «якобы» автор употребил потому, что иногда это «облегчение» оборачивается такой ошибкой, что лучше бы и не использовать этих сил инерции вообще. Тем более сейчас, когда всю счетную работу выполняют компьютеры, а им почти все равно, облегчили мы расчеты или нет.

Так вот для вращательного движения вопрос с силами инерции обстоит гораздо запутаннее, чем для прямолинейного. И последствия ошибок могут быть хуже. Чего стоят хотя бы пресловутые центробежные силы? Почти каждый из нас, включая даже научных работников, думает, что такие силы есть и действуют они на вращающуюся точку или тело. И бывают очень обескуражены, когда узнают, что их нет и быть не может.

Приведем простейший, но тем не менее убийственный для этих сил пример. Известно, что Луна вращается вокруг Земли. Спрашивается, действуют ли на нее центробежные силы? Спросите, пожалуйста, об этом своих товарищей, родителей, знакомых. Большинство ответит: «Действуют!» Тогда вы поспорьте с ними на что хотите и начинайте доказывать, что этого не может быть.

Основных довода – два. Первый: если бы на Луну действовала центробежная сила (то есть сила, направленная от центра вращения наружу), то она могла бы действовать только со стороны Земли, так как других тел поблизости нет. Думаю, что напоминать о том, что силы действуют на тела только со стороны других тел, а не «просто так», уже не надо. А если все так, то, значит, Земля не притягивает, а отталкивает Луну – от себя наружу. Между тем, как мы знаем, существует закон всемирного тяготения, а не отталкивания. Поэтому на Луну может действовать со стороны Земли только одна-единствен-ная сила – притяжения P, направленная точно наоборот – от Луны к Земле. Такая сила называется центростремительной, и она реально есть, она-то и сворачивает Луну с прямолинейного инерционного пути и заставляет вращаться вокруг Земли. А центробежной силы, извините, нет (рис. 54).



Второй довод. Он для тех, кто не знает о существовании закона всемирного тяготения или забыл его. Тогда если бы на Луну действовала центробежная сила (естественно, со стороны Земли, так как других тел, как мы уже знаем, поблизости нет), то Луна не стала бы вращаться вокруг Земли, а улетела бы прочь. Если на Луну не действовало бы вообще никаких сил, то она спокойно пролетела бы мимо Земли по инерции, то есть по прямой (мы же забыли о всемирном тяготении!). А если бы со стороны Земли на Луну действовала центробежная сила, то Луна, подлетая к Земле, свернула бы в сторону и под действием этой силы улетела бы навсегда в космическое пространство. Только бы мы ее и видели! Но раз этого не происходит, стало быть, центробежной силы нет. Вы выиграли спор, причем в любом случае. А появилась эта центробежная сила оттуда же, откуда и силы инерции в прямолинейном движении – из принципа Даламбера. Здесь, во вращательном движении, этот принцип еще более облегчает решение задач, чем в прямолинейном. Еще бы, прикладываем к существующей центростремительной силе несуществующую центробежную – и Луна как бы зависает на месте! Делайте с ней, что хотите, определяйте ускорения, скорости, радиусы орбиты, периоды обращения и все остальное. Хотя все это можно определить и без использования принципа Даламбера.


Рис. 55. Занос автомобиля на повороте (схема ГАИ)

Но Луна Луной, это все пустяки по сравнению с получением водительских прав в ГАИ. Автор преподает на автомобильном факультете, где все его студенты обязаны получать права и все стонут от ГАИвской физики. Жалуются, что в ГАИ им объясняют движение автомобиля на повороте так: «Поскольку при повороте на автомобиль действует сила тяги, направленная вперед по касательной, и центробежная сила, действующая наружу, то занести машину может только наружу от касательной» (см. схему на рис. 55). Но так как вместо центробежной на автомобиль действует центростремительная сила, направленная точно наоборот, то занесет машину внутрь от касательной! Если, конечно, не учитывать других причин – увода колес, переворачивания, бокового ветра, удара сбоку и т. д. Таким образом, центробежная сила, вернее, учет ее вместо центростремительной, может привести к аварии, или ДТП, так как автомобиль поедет совсем не туда, куда рассчитывали.

Если на автомобиль и действует какая-нибудь сила P, то только со стороны дороги на колеса (воздух здесь ни при чем, его не учитываем). Если эта сила центробежная, то она будет прогибать шины от центра наружу, а если центростремительная – то, наоборот, к центру. А любой инспектор ГАИ отлично знает, что на повороте шины автомобилей прогибаются по направлению к центру (рис. 56). Значит, и сила P действует туда же, и она центростремительная. Скольких аварий удалось бы избежать, если бы в ГАИ «не злоупотребляли» принципом Даламбера!


Рис. 56. Шины при повороте прогибаются к центру поворота

Но ради справедливости заметим все-таки, что центробежные или просто направленные от центра силы все-таки бывают, но действуют они вовсе не на то тело, которое вращается, а на связь, удерживающую это тело (рис. 57). То есть не на автомобиль, а на дорогу, не на Луну, а на Землю, не на камень в праще, а на веревку и руку человека и т. д.


Рис. 57. Действие центробежных сил

Может возникнуть вопрос, а почему же все-таки падает велосипед наружу при крутом повороте, если не успел наклониться внутрь, почему опрокидываются наружу при поворотах на большой скорости трамваи, поезда и автомобили? Ведь центробежной силы нет, что же толкает эти машины наружу при повороте?

Поясним это на примере велосипеда, а заодно станет ясно, почему он так устойчив. Представьте себе едущий велосипед, который начинает поворачивать (рис. 58). Взглянем на него сверху. Колеса начинают «уходить» к центру поворота, влекомые силой трения с дорогой, а весь верх, включая седока, или байкера по-современному, стремится продолжать свой путь прямолинейно – по закону инерции. Что же получается? Колеса «выезжают» из-под седока вбок, и он падает набок – наружу от поворота. Но ни в коем случае не так, как объясняют это в ГАИ, – не наружу от касательной к повороту, от своего предыдущего прямолинейного пути. А точнее – где-то между окружностью поворота и этой касательной. Этим же действием инерции объясняется устойчивость движения велосипеда. Стоит начать ему падать набок, как сознательно или автоматически велосипедист поворачивает руль в сторону падения и как бы «подводит» колеса под положение наклон себя.


Рис. 58. Едущий велосипед на повороте: а – вид сверху; б – вид спереди

Таким же образом, а именно проявлением инерции, объясняется отбрасывание людей наружу на так называемом «колесе смеха», или «чертовом колесе». Можно говорить о центробежном эффекте или центробежном стремлении, благодаря которому люди, автомобили, велосипеды и т. д., движущиеся по кругу, стремятся оказаться на самом большом его радиусе, или, как это нам кажется, отбрасываются наружу (рис. 59). Естественно – они стремятся двигаться по прямой (по закону инерции), а прямая – это та же окружность, но с бесконечно большим радиусом, заведомо превышающим радиус любой окружности.


Рис. 59. Люди на вращающемся колесе отбрасываются на его края

На этом же свойстве основаны многочисленные другие аттракционы – «чертовы», или «мертвые», петли (изобретенные в 1902 г. одновременно двумя цирковыми актерами – Джонсоном и Нуазеттом) (рис. 60), наклонные карусели, которые широко используются и сегодня в парках развлечений, и т. д.



Рис. 60. «Чертова петля» и велосипед на ней

Этот же центробежный эффект используется для создания так называемой «искусственной гравитации», причем современный взгляд на природу тяготения, как это ни удивительно, не усматривает здесь особой разницы. (Кого заинтересует этот достаточно сложный вопрос, автор отсылает к своей книге ). Космические станции предполагается вращать вокруг оси так, чтобы космонавты чувствовали себя комфортно, ощущая тяжесть почти как на Земле. Нечто аналогичное происходит и с растениями, которые высаживают на внутренней части вращающегося колеса (рис. 61). Проросшие семена бобов дают ростки, устремляющиеся не вверх, как обычно, а к центру колеса, т. е. в направлении искусственной Так было показано, что и для живых организмов гравитация естественная или искусственная – все равно.


Рис. 61. Стебли проросших растений гравитации. направлены к оси, корешки – наружу

Если быть точнее, то конечно, разница есть. При естественной гравитации тела притягиваются к некой точке, а при искусственной как бы «отталкиваются» от нее, что и видно из рис. 61. Но принципиального отличия в биологическом отношении здесь нет.

Тайна вращающегося волчка

Но совсем запутано дело, когда силы инерции при вращении не Даламберовы, а Эйлеровы. Те, которые «возникают» при использовании вращающейся системы отсчета. То есть когда мы пытаемся вращающуюся систему принять за неподвижную и приложить такие силы инерции, которые сохранили бы все по-прежнему.

Вспомните человека, идущего в поворачивающем трамвае, и вы поймете, насколько сложны при этом должны быть силы, чтобы в неподвижном трамвае сбить с пути человека так же, как это произойдет с ним в поворачивающем. Всякие кориолисовы силы и гироскопические моменты, используемые при этом, – те же фиктивные силы инерции, только гораздо более сложные.

Попытаемся для примера пояснить, почему реки, текущие вдоль меридиана, в Северном полушарии подмывают правые берега, а в Южном – левые. Это можно объяснить просто и доходчиво без сил инерции, и сложно с ними, тем более несуществующими. Такое свойство рек подмывать разные берега в разных полушариях называется законом Бэра, по имени русского географа К. М. Бэра, жившего в XIX веке и подметившего эту особенность.

Земля, как известно, вращается с запада на восток. Поэтому нам и кажется, что Солнце идет над нами с востока на запад. Так как Земля вращается, она не может служить достаточно точной инерциальной (неподвижной) системой отсчета, хотя часто мы и считаем ее таковой. Поэтому нас и удивляют всякие необычные явления, которые в неподвижной системе отсчета происходить не могут.

Взглянем на Землю с высоты со стороны ее Северного полюса. Представим для простоты, что река, начинаясь на экваторе, течет прямо на север, пересекает Северный полюс и заканчивается тоже на экваторе, но уже с другой стороны. Вода в реке на экваторе имеет ту же скорость в направлении с запада на восток (это не течение реки, это ее скорость вместе с берегами и с Землей!), как и ее берега, что при суточном вращении Земли составляет около 0,5 км/с. По мере приближения к полюсу скорость берегов уменьшается, а на самом полюсе она равна нулю. Но вода в реке «не хочет» уменьшать свою скорость – она подчиняется закону инерции. А скорость эта направлена в сторону вращения Земли, то есть с запада на восток. Вот и начинает вода «давить» на восточный берег реки, который оказывается правым по течению. Дойдя до полюса, вода в реке полностью утратит свою скорость в «боковом», «касательном», направлении, так как полюс – это неподвижная точка на Земле. Но река-то продолжает течь теперь уже на юг, и берега ее вращаются опять же с запада на восток со все увеличивающейся, по мере приближения к экватору, скоростью. Западный берег начинает «давить» на воду в реке, разгоняя ее с запада на восток, ну а вода, по третьему закону Ньютона, «давит» на этот берег, который опять же оказывается правым по течению.

На Южном полушарии все происходит наоборот, потому что если взглянуть на Землю со стороны Южного полюса, то вращение ее уже будет видно в другом направлении – не против часовой стрелки, как со стороны Северного полюса, а по часовой стрелке. Все, кто имеет глобус, могут проверить это.

Вот вам и закон Бэра!

Но если попытаться пояснить то же самое с точки зрения механики относительного движения и Эйлеровых сил инерции – результат был бы плачевный. Половина читателей заснула бы, а другая половина занялась бы другими делами. Здесь без высшей математики и механики не обойтись, да и физический смысл начисто теряется. Потому-то студенты так плохо воспринимают и «сдают» этот материал. Но для сложных случаев, например теории гироскопов, без этого обойтись нельзя.

Точно так же, только пользуясь понятием инерции, можно объяснить такое сложное явление, как гироскопический эффект, поясняющий, например, таинственное поведение вращающегося волчка.

Продолжим нашу реку дальше и опишем ею замкнутый круг вокруг Земли. При этом мы заметим, что вся северная часть реки (в Северном полушарии) будет стремиться направо, а вся южная часть – налево. Вот и все объяснение гироскопического эффекта, который считается едва ли не труднейшим в теоретической механике!

Итак, наша река – это огромное кольцо или маховик, вращающийся в том же направлении, что и течение реки. Если при этом поворачивать этот маховик в направлении вращения Земли – против часовой стрелки, то вся северная его часть будет отклоняться вправо, а южная – влево. Иначе говоря, маховик будет поворачиваться так, чтобы его вращение совпало с направлением вращения Земли! А физический смысл этого явления уже понятен из рассмотрения закона Бэра.

Проверить это утверждение экспериментом проще простого, особенно тем, у кого есть велосипед. Приподнимите переднее колесо велосипеда над полом и разгоните его в направлении вращения нашей реки-маховика, то есть так же, как оно вращается при движении велосипеда вперед. А затем резко поверните руль велосипеда в направлении вращения Земли – то есть против часовой стрелки. И вы увидите, что весь велосипед наклонится верхней частью вправо, что и требовалось доказать (рис. 62).


Рис. 62. Проверка гироскопического момента на велосипедном колесе

Если под рукой нет велосипеда, а чаще всего на работе и учебе так и бывает, то можно обойтись монеткой или любым колесиком, которое можно покатать по столу. При этом вы увидите, что куда монетка будет наклоняться вбок, теряя равновесие, туда и будет сворачивать по ходу своего качения (рис. 63). Это замечательное и, главное, воспроизводимое в любой момент правило поможет вам определить поведение вращающегося колеса, маховика, диска при их вынужденных поворотах. Автор сам в своей работе только этим правилом и пользуется, и поверьте, что это намного проще, чем другими, да и проверить в любой момент можно.


Рис. 63. Правило колеса – оно сворачивает в ту же сторону, на какой бок стремится упасть

Ну а теперь в самый раз разобраться, как наступает прецессия – конусообразное движение волчка, да и самой Земли, если хотите. Итак, наша река-маховик постоянно пытается отклонить Северный полюс Земли вправо; но Земля-то крутится, вот и, постоянно отклоняясь вправо, Северный полюс начинает «выписывать» окружность. Так же поведет себя вращающийся волчок, если толкнуть его или другим способом нарушить его равновесие. Только следует знать, что прецессирует Земля не из-за рек (мы поговорим об этом тоже!), а из-за неравномерного (вне-центренного) притяжения ее, главным образом Солнцем. Ось вращения Земли «ходит кругом по конусу», образующая которого наклонена к оси конуса на угол 0,41 рад, или 23° 27 . Полный оборот вокруг оси конуса ось Земли делает за 26 тысяч лет, и, естественно, координаты звезд, в том числе и условно неподвижных (например, Полярной звезды), непрерывно меняются. Древние египтяне, например, видели на небе такие созвездия, которые их современники уже не могут видеть.

Как же определить направление прецессии любого вращающегося тела – колеса, волчка и т. д.? Да по тому же «правилу колеса», о котором уже говорилось. Итак, если любое вращающееся тело представить в виде катящегося колеса, а возмущающий момент – в виде момента, стремящегося опрокинуть это колесо набок (что, собственно, и делают силы тяжести!), то колесо это будет сворачивать в сторону падения по ходу качения. То есть если колесо падает направо, то вправо же оно и свернет. Вот это-то поворачивание колеса и есть прецессия, и так можно определить ее направление.

Возможен ли двухколесный автомобиль?

Да, автомобиль, именно автомобиль, а не велосипед, мотоцикл, мотороллер, мопед, мокик и пр., где устойчивость достигается «маневрированием» седока, или байкера. Кстати, приходится много читать о том, что устойчивость велосипеда и прочих двухколесных достигается благодаря гироскопическому эффекту их колес. Это явное преувеличение, и вот почему.

Что такое гироскопический эффект? Это возникновение момента при попытке принудительного смещения оси вращающегося тела. Одним словом, то, что мы рассматривали в предыдущем разделе. Но величину гироскопического момента мы не определяли. Для приведенного примера поворачивания велосипедного колеса, например, этот момент равен произведению момента инерции колеса на угловую скорость его вращения и на угловую скорость его поворота («вынужденной прецессии»). Для простоты решим, что масса колеса 2 кг, радиус его 0,25 м и, стало быть, момент инерции, равный произведению массы на квадрат радиуса, равен 0,125 кг?м 2 . Велосипедист спокойно маневрирует уже на скорости 1 м/с, и колесо при этом вращается с угловой скоростью 4 рад/с. Угловая скорость поворота оси колеса раз в 20 меньше и равна примерно 0,2 рад/с. В результате получаем гироскопический момент, равный 0,1 Нхм. Это то же самое, если гирьку в 10 г повесить на линейку длиной в 1 м. Вряд ли такой момент чему-нибудь поможет.

В то же время едущий велосипедист, свернув всего на 10 см от прямой, если сознательно не наклонится в сторону поворота, создаст момент, равный его весу плюс полвеса велосипеда (примерно), умноженные на 0,1 м, или, грубо, 100 Нхм. Это в 1 000 раз больше, чем гироскопический момент! Вот как достигается устойчивость велосипеда.

Но нам нужен не велосипед, а автомобиль, который даже в неподвижном положении сохранял бы равновесие. Прежде всего гарантию от опрокидывания на стоянке дают разве только специальные подставки или, на худой конец, кирпичи, подложенные под борта. Не бывает устойчивости без таких подставок или без постоянного ручного или автоматического регулирования этой устойчивости. Но договоримся, что получать эту устойчивость одним поворотом колес автомобиля мы не можем, так как не сможем создавать своим телом достаточный момент, противодействующий опрокидыванию, как на велосипеде. Представьте себе, что все пассажиры автомобиля во главе с водителем будут то и дело ерзать по сиденьям, спасая автомобиль от опрокидывания. Тут нужен стабилизатор, не зависящий от поворота колес и положения пассажиров.

Вот здесь и смог бы пригодиться гироскопический эффект, о котором шла речь выше. И такой двухколесный автомобиль был создан в 1914 г. русским инженером П. П. Шиловским, а до этого англичанином Бреннаном. Правда, экипаж Бреннана передвигался по рельсу и, строго говоря, был мононорельсовым экипажем, но это сути дела не меняет. Он попроще экипажа Шиловского, с ручным управлением, и понять его принцип действия проще (рис. 64).




При наклоне вагона, допустим, на правый по ходу борт, водитель поворачивал рукоятку 3 влево. Тем самым он, заставляя прецессировать маховик в рамке 1, вызывал гироскопический момент, действующий на жестко закрепленную на платформе рамку 2 и направленный влево по движению. Вагон выправлялся. При этом безразлично, двигался вагон или был неподвижен. Такой вагон, вмещавший 40 человек, был построен для англо-японской выставки в 1912 г. и перевозил посетителей по территории выставки. Надо сказать, что водителем должен был работать мужик здоровый и тяжелый, иначе ему бы не справиться с ролью автомата-регулятора. Да и маховик должен был весить не одну сотню килограммов и крутиться достаточно быстро.

А вот экипаж Шиловского, который появился на улицах Лондона в 1914 г., освобождал человека от подобных неудобств; его схема приведена на рис. 65. Там присутствовала также подвижная рамка 1 с маховиком массой 314 кг, закрепленная на оси в неподвижной рамке, жестко связанной с кузовом автомобиля. Однако роль человека выполнял примитивный автомат, состоящий из трубки с шариком 4, который при наклоне машины перекатывался набок и замыкал соответствующий контакт 3. От этого начинал работать электромотор 2 и через зубчатую передачу вращал рамку 1 с маховиком, совсем как силач-регулировщик у Бреннана.




Что можно сказать об автомобиле Шиловского? Для своего времени это было чудо, собиравшее сотни зевак на улицах Лондона (рис. 66). Но задуман он был как военная машина для передвижения по пересеченной местности и для обычного автомобиля был очень дорог. К тому же автоматика заставляла желать лучшего, и на поворотах автомобиль вел себя неадекватно. Но роль свою он сыграл и вошел в историю автотранспорта.



Рис. 66. Двухколесный автомобиль Шиловского (общий вид)

А в 1967 г. появился и был испытан новый американский двухколесный автомобиль «Джирон» с тем же принципом стабилизации кузова. Но все было малогабаритно и современно: маховик диаметром всего 0,6 м, вращающийся с частотой 6 тысяч оборотов в минуту, умещался под капотом машины. Двигатель автомобиля мощностью всего около 60 кВт, поддерживал вращение маховика, и его хватало, чтобы двигать автомобиль со скоростью 140 км/ч. На стоянке и при низкой скорости выдвигались дополнительные колеса-упоры. Этот автомобиль легко ходил по тропам и на косогорах с поперечным уклоном до 60°, сохраняя вертикальность, чего обычный автомобиль, конечно же, сделать не сможет. Такой, по-видимому, была первоначальная задумка Шиловского, но осуществить ее в 1914 г. он не смог.

Имеет ли будущее двухколесный автомобиль? Трудно достаточно уверенно ответить на этот вопрос. Однозначного мнения у автора по этому вопросу нет. Возможно, с развитием автоматики, компьютеризацией автомобилей и потребностью весьма маневренного и экономичного автомобиля, такой и появится снова. Но в одном можно быть уверенным, что маховики появятся на автомобилях прежде всего не как стабилизаторы, а как накопители энергии, способные намного повысить экономичность и динамичность машин. Вот тогда-то почему бы уже имеющийся на автомобиле маховик не использовать еще и как стабилизатор?

Как накопить кинетическую энергию?

Когда мы раскручиваем маховик, мы накапливаем в нем кинетическую энергию. Энергия является непременным атрибутом любого вращающегося тела, и равна она половине произведения момента инерции маховика (мы уже вычисляли его для велосипедного колеса) на квадрат угловой скорости.

До каких же величин мы можем накапливать в нем энергию? Будем разгонять маховик все быстрее и быстрее, и энергия в нем будет расти еще скорее – увеличили угловую скорость в 2 раза, а энергия увеличилась в 4. Есть ли этому предел? Ну прежде всего такой маховик начнет «гонять» воздух, как хороший вентилятор. Автор раскручивал вагонное колесо (от пассажирского вагона) до 6 тысяч оборотов в минуту на специальной установке, и требовалась для этого мощность в десятки киловатт. Полная мощность двигателя автомобиля – только на поддержание вращения такого маховика!

Если же откачать воздух, то потери мощности сразу упадут в сотни раз – опоры или подшипники маховика «забирают» на свое вращение совсем немного. Но мы можем пойти дальше и поставить вместо обычных магнитные подшипники (о них речь пойдет позже) и почти совсем устраним потери на вращение маховика. Такой маховик, будучи разогнанным, будет вращаться до остановки месяцы, а то и годы. Чем больше маховик, тем больше он будет вращаться. Большой маховик – Земля – вращается уже около 4 миллиаров лет, и за это время замедлился лишь в 3 раза, хотя потери, по нашим меркам, колоссальные. Луна «тормозит» Землю в ее вращении приливами и отливами всех океанов, а это мощности, во много раз превышающие мощности, вырабатываемые человечеством искусственно.

Итак, разгоняем наш маховик (пусть все то же вагонное колесо на специальной установке, которая действительно допускает откачку воздуха из камеры вращения маховика) все больше и больше. При 8 тысячах оборотов в минуту замечаем (специальными приборами), что диск начинает вытягиваться, принимать чуть бо льшие размеры. Еще небольшая прибавка вращения – и маховик разрывается, обычно на три части, три больших осколка, глубоко проникающих в свинцовый защитный слой (рис. 67). Еще бы – скорость разлета осколков превышала 400 м/с, почти как у ружейной пули.


Рис. 67. Картина разрыва маховика

Почему же это произошло, что помешало разгонять маховик еще? Да все та же инерция. Каждая частичка маховика стремится двигаться прямолинейно, а тут ее «заставляют» сворачивать с прямолинейного пути, да причем так часто. Прочность металла маховика, пока может, мешает разлету этих частиц, но когда механические напряжения становятся чрезвычайно большими, металл не выдерживает и разрывается. Частицы (это обычно три крупных осколка!), получив свободу, разлетаются по прямым – касательным к окружности вращения.

Есть простая формула для определения напряжений в материале маховика, если он выполнен в виде обода-кольца, как чаще всего и бывает. Напряжения – ? равны плотности материала – ?, умноженной на квадрат окружной скорости – V маховика. Для только что разорванного нами вагонного колеса, изготовленного из качественной стали, эти напряжения получились:

7 800 · 400 2 = 1,25 х 10 9 Па,

где 7 800 – плотность стали, кг/м 3 ;

400 – скорость, при которой разорвало маховик, м/с.

Напряжения в 1,25 х 10 9 Па или, как чаще говорят, 1 250 МПа и есть предельные напряжения на растяжение той качественной и термообработанной стали, из которой делают колеса поездов.

Энергии при этом наше колесо накопило столько же, сколько ее и содержали в себе разлетающиеся со скоростью 400 м/с осколки – каждый килограмм осколка – 4002 м 2 /с 2 /2 = 80 000 Дж. Иными словами, удельная энергоемкость нашего маховика-колеса в момент разрыва составляла 80 кДж/кг. Много это или мало? Это почти столько же, сколько у автомобильных аккумуляторов, и в десятки раз больше, чем у лучших конденсаторов. Но мы должны помнить, что эта энергия накоплена в момент разрыва, который допустить нельзя! Поэтому этот показатель нужно уменьшить как минимум в 2 – 3 раза. Маловато получается.

А если взять материал попрочнее стали? Да и полегче, поменьше плотностью, чтобы напряжения уменьшить? Да, тогда мы можем рассчитывать на большие значения энергии, но есть ли такие материалы?

В том-то и дело, что есть, и таких в современной технике немало: стальная проволока, лента из аморфного металла (метгласс), волокна из углерода, кевлара (из такого делают бронежилеты), кварца и даже пока очень дефицитного «алмазного» волокна. Удельные энергоемкости маховиков, изготовленных из таких материалов, будут соответственно равны: 200, 500, 1 500, 1 800, 5 000 и 15 000 кДж/кг. Последние цифры очень велики – посудите сами, они почти в 100 раз больше, чем у автомобильного аккумулятора! Еще лет 20 назад такие цифры были опубликованы и у японцев, и американцев.


Рис. 68. Проволочный супермаховик с концами проволок внутри навивки:

1 – навивка к центру (стрелками показано направление навивки); 2 – обычная навивка; 3 – вал; 4 – щека


А можно ли изготовлять маховики из таких волокон или лент? Ведь их обычно отливают или куют. Оказывается, можно, и в ряде случаев это даже легче, чем отливать или ковать. Эти волокна и ленты надо навивать на центр или ступицу маховика, почти так же, как мы навиваем нитки на катушку. Только центр этот должен обладать необходимой упругостью, навивка должна происходить с определенным натягом, а последний виток должен оказаться не снаружи, а внутри навивки (рис. 68). И если это все выполнить, мы получим чудесный, сверхэнергоемкий маховик, названный супермаховиком, который и разрываться-то будет безопасно, без осколков. В супермаховике, навитом из ленты (рис. 69, а), при случайном (или намеренном!) превышении критической скорости вращения разрывается самый тяжело нагруженный внешний виток; он отходит от основной намотки и, прижимаясь к корпусу маховика, трением тормозит вращение (рис. 69, б). Кроме высокой энергоемкости мы получаем еще и безопасность, столь важную для маховиков!


Рис. 69. Маховик, навитый из прочной ленты (а), и картина разрыва его в кожухе (б): 1 – лента; 2 – кожух; 3 – центр

Изобретение супермаховика было сопряжено с рядом курьезов, соответствующих прошедшей эпохе. В мае 1964 г. 24-летний аспирант, автор этих строк, подает заявку на изобретение супермаховика. Но так как в те, еще советские, времена изобретение считалось «добровольным подарком» государству, заявки тщательно проверялись на полезность. Чтобы кто угодно не дарил государству чего попало. Теперь на полезность изобретения не проверяют: заплатил пошлину – получай патент! Если он не полезный – разоряйся сам!

Так вот «компетентная» организация определила, что маховики нужно ковать или отливать, а навивать их из проволоки или волокон – глупость! Так автору и отказали в выдаче авторского свидетельства (того, что тогда заменяло патент). Но приоритет-то остался. По тем же советским законам если полезность будет доказана, то изобретения можно будет снова признать. Сами заявки при этом отлеживались в подземелье в секретном хранилище где-то на Урале. И вот приходит время, и в январе 1965 г. заявку на супермаховики подают американцы, а за ними потоком все развитые страны. Супермаховики строят, используют в технике (особенно в авиационной и космической – они пока дорогие!), по ним созывают международные симпозиумы. Автор подал апелляцию и – надо же – ему выдают авторское свидетельство с приоритетом 1964 г., но… 20 лет спустя, т. е. через срок, когда все права на изобретения становятся всеобщими. Таковы патентные законы! Но автор доволен и этим – хоть будем знать, кто и в какой стране первым изобрел супермаховик!

Вот как и в чем лучше всего накапливать механическую энергию, да и энергию вообще. Дело в том, что прогресс в деле создания сверхпрочных материалов не стоит на месте, и уже предсказано создание так называемых «плотноупакованных» и «звездных» материалов фантастической прочности и плотности. Маховик из таких материалов сможет, например, служить двигателем, т. е. снабжать энергией автомобиль весь срок его службы, будучи раскрученным еще на конвейере!

Пружина, резина или газ?

Позвольте, маховики, супермаховики… а что, в пружинах, как это делается, например, в механических часах или игрушках, разве не запасают механическую энергию? Ведь существуют же «упругие» накопители, или аккумуляторы энергии.

Аккумуляторы с использованием упругости или потенциальной энергии применялись человеком еще в глубокой древности: вспомним хотя бы о луках, самострелах и катапультах. В эпоху Возрождения пружинные двигатели можно было встретить в заводных игрушках, часах и даже в «самобеглых» каретах (рис. 70), предназначенных исключительно для торжественного выезда королей. Пружины тогда ковали кузнецы, и стоили они весьма дорого.


Рис. 70. Механическая карета XVI в. с пружинным двигателем, заводимым ступальным колесом (с рисунка Альбрехта Дюрера)

Сейчас же пружинные двигатели для самых различных механизмов выпускаются многомиллионными сериями. Наиболее распространенные из них – двигатели со спиральной пружиной. Закаленная пружинная лента закладывается в обойму (барабан), крепится одним концом к ней, другим – к валу и заворачивается вокруг него (рис. 71). В таком «взведенном» состоянии пружина «заневоливается», т. е. оставляется на несколько часов или дней для стабилизации упругих свойств. КПД этих двигателей выше 0,9. Пружинная лента работает на изгиб. Причем та ее часть, что напряжена сильнее (навернута на меньший диаметр), аккумулирует больше энергии; периферийные же части напряжены слабее – стало быть, и аккумулируют меньше энергии. Если же пружину предварительно изогнуть S-образно, тогда все ее участки будут напряжены равномерно, и она накопит гораздо больше потенциальной энергии.


Рис. 71. Пружинный аккумулятор со спиральной пружиной (а) и S-образная спиральная пружина (б): 1 – обойма; 2 – пружина; 3 – вал

Поднять энергоемкость спиральных пружин можно еще, придав им желобчатый профиль. Наворачиваясь на вал, такая пружина претерпевает деформацию изгиба как в продольном, так и поперечном направлениях и накапливает максимальную энергию. S-образные пружины с желобчатым профилем обладают и другими достоинствами, например почти постоянным крутящим моментом.


Рис. 72. Гидроаккумулятор с пружинным двигателем: 1 – пружина; 2 – поршень; 3 – гидромотор

Для машин с гидравлической системой лучше всего подойдет гидроаккумулятор с пружинным двигателем (рис. 72). В нем накопление и выделение энергии производятся при закачке или выпуске масла. Здесь пружина уже не ленточная, а проволочная. Эффективность проволоки можно значительно повысить, удалив осевые участки, которые при ее кручении не участвуют в процессе накопления энергии. Конечно, изготовление вместо пружинной проволоки трубки с высокими прочностными свойствами куда сложнее и труднее, но при необходимости приходится идти и на это. Однако, несмотря на все меры по увеличению энергоемкости пружинных двигателей, они по этому показателю сильно отстают от аккумуляторов других видов. Например, энергоемкость маховиков превышает энергоемкость любых пружин при той же прочности материала в десятки тысяч раз! Каковы же пути повышения энергоемкости «упругих» аккумуляторов? Накопленная в аккумуляторе механическая энергия тем выше, чем значительнее сила и перемещение под действием этой силы. Следовательно, в качестве аккумулирующего элемента целесообразно использовать материалы, допускающие большие деформации под действием больших сил. И здесь, пожалуй, не найдешь ничего лучшего, чем газ. При его сжатии запасается огромная энергия, соизмеримая с энергией перспективных электроаккумуляторов и маховиков. К сожалению, и недостатки «газовых» аккумуляторов (рис. 73) весьма существенны.


Рис. 73. Газовый аккумулятор (пневмоаккумулятор): 1 – баллон; 2 – пневмодвигатель; 3 – клапан

Прежде всего, закачивать газ в баллон надо компрессором, а отбирать энергию – пневмодвигателем. А КПД этих агрегатов довольно невысок: хорошо, если удастся использовать хоть четверть затраченной энергии. И еще: газ при сжатии нагревается, а при расширении охлаждается. Поэтому только что закачанный газ в баллоне очень горяч, но со временем он охлаждается, принимает температуру окружающей среды, и это выделяющееся тепло уносит с собой до 40 % накопленной энергии – от запасов газового аккумулятора остаются лишь жалкие крохи.

Однако есть способ повышения КПД газовых аккумуляторов – это их симбиоз с гидроприводом (рис. 74). Выше был упомянут пружинно-гидравлический аккумулятор, где энергию аккумулирует пружина, а гидросистема выполняет лишь роль трансмиссии. При этом КПД аккумулятора (называемого гидрогазовым) сильно возрастает. Во-первых, газ расширяется в гораздо меньшей степени, чем в чисто газовых аккумуляторах, и при этом происходит гораздо меньшее тепловыделение. Во-вторых, гидросистема, которая в данном случае является гидрообьемной, или статической, обладает весьма высоким КПД. Поэтому гидрогазовые аккумуляторы находят широкое применение для аккумулирования значительных количеств энергии в самых различных машинах: прессах, стартерных устройствах, самолетах.


Рис. 74. Гидрогазовый (гидропневматический) аккумулятор: 1 – газовая полость; 2 – жидкость; 3 – эластичная перегородка; 4 – обратимая гидромашина; 5 – бак

Для повышения удельной энергии гидрогазовых аккумуляторов баллон, в который закачан газ, выполняется из возможно более прочных материалов, имеющих к тому же низкую плотность. Такими материалами могут быть стеклянное или графитовое волокно на эпоксидной связке, а также целый ряд недавно разработанных сверхпрочных материалов. Баллон лучше всего изготовить в виде сферы (она имеет наименьшую площадь при наибольшем объеме), внутренняя поверхность которой соответствующим образом герметизирована. Для закачки в баллон используются газы, технически инертные, – обычно азот, реже гелий. Газовая и жидкостная среды в таком аккумуляторе чаще всего разделяются. В старых конструкциях цилиндрических баллонов это делалось с помощью свободного поршня, а в более прогрессивных, в том числе и сферических, – с помощью эластичной перегородки. Давление газа в таких аккумуляторах обычно бывает 15-40 МПа.

Гигантские газовые аккумуляторы могут применяться в качестве аккумулирующих устройств для электростанций. Энергия будет запасаться в аккумуляторе путем сжимания газа (разумнее всего – воздуха) в ночное время, когда расход электроэнергии мал. В часы пик при потребности в максимальной мощности электростанции газ будет подаваться на мощные турбины или другие пневмодвигатели, добавляя накопленную энергию к энергии электростанции. Согласно существующим проектам газ предполагается закачивать в огромные полости под землей (например, выработанные шахты).

Но вернемся к твердым веществам. Неужели нет таких веществ, которые, имея достаточную прочность (например, как у металлов), имеют при этом высокую упругую деформацию? Тогда пружина из таких материалов накопила бы побольше энергии.

Оказывается, есть такие материалы и называются они псевдоупругими. Псевдоупругость – это способность материала (металла) растягиваться до разрыва не на 1 – 2 %, как стальная проволока, например, а на 15-20 %. Причем если обычная сталь при деформациях «устает» и выдерживает не так уж много циклов (вспомним, как часто ломаются пружины!), то псевдоупругий материал, у которого принцип деформации иной, выдерживает циклы нагружения практически без «усталости».

Псевдоупругие материалы – почти те же, которые обладают эффектом памяти формы, о них много писалось и пишется. В основном это сплавы титана и никеля; если им задать некую форму в нагретом состоянии, а потом, охладив, изменить эту форму (например, согнуть проволоку как угодно), то при нагревании сплав снова примет прежнюю форму, как бы «вспоминая» ее. Такие сплавы применяют сейчас во множестве случаев, начиная с тепловых машин, которые работают без пара и бензина при минимальной разности температур, и кончая зондами, которые вводятся в артерии и даже сердце человека. Нагреваясь в его теле, сплав «вспоминает» свою прежнюю форму и, к примеру, расширяет артерию.

Но речь идет о свойстве псевдоупругости у таких материалов. Проволоку из такого сплава можно деформировать – изгибать, растягивать в 10 раз больше, чем самую прочную и упругую сталь. Стало быть, и энергии пружина из такого материала накопит в 10 раз больше. Вот какой скачок в накоплении энергии! Часы с такой пружиной, например, будут идти в 10 раз дольше, чем обычные заводные, но использовать такие часы можно будет пока разве только в сауне. Потому что «упругую» силу такой материал приобретает при 150-200 °C. Автор не сомневается, что скоро будут созданы материалы, которые будут «сильны» и при комнатной температуре. Пока же они ведут себя при таких температурах вяло, удлиняясь и укорачиваясь медленно, как будто сделаны они из смолы, только очень прочной.

Но автор придумал применение таким материалам и сегодня, причем применение очень эффектное – для спорта. Если сделать тросик для метания молота не из стали, а из такого материала, по прочности близкого к ней, то при вращении молота псевдоупругий тросик будет растягиваться в 20 раз сильнее, чем стальной. А это, как хорошо понимают спортсмены – метатели молота, обеспечит значительное, почти на 20 %, повышение дальности полета снаряда. Материал тросика в правилах не регламентирован, так что и нарушений не будет!

Помог же шест из стеклопластика вместо бамбукового поднять рекорды прыжков, вот и тросик из псевдоупругого материала поднимет рекорды метателей. Спортсмены, не медлите, рекорды ждут вас!

Остается еще один материал, который имеет огромную упругую деформацию, правда не такой уж прочный. Это знакомая всем нам резина. Лучше всего она работает на растяжение, накапливая при этом удельной энергии в десятки раз больше, чем стальные пружины. Однако для машин необходимо, чтобы, как и в заводных пружинах, вал накопителя закручивался бы.

С учетом этого автором сконструирована упругая муфта-аккумулятор (рис. 75). Резиновые жгуты, закрепленные концами на ведущей и ведомой полумуфтах, опираются на легкие, свободно сидящие на оси промежуточные поддерживающие диски (изготовленные, например, из пластмассы) и при относительном повороте полумуфт принимают положение винтовой линии. Поскольку крепление жгутов к полумуфтам шарнирное, резина практически подвергается только растяжению. По энергоемкости эта муфта соизмерима даже с маховиками.

Но почему же резиновые элементы, обладая столь ценными качествами, используются как накопители энергии не так уж широко?


Рис. 75. Резиновая муфта – аккумулятор энергии: 1 – ведущий вал; 2 – ведомая полумуфта; 3 – резиновые жгуты; 4 – поддерживающие промежуточные диски

Если деформировать, например, растягивать, резиновый упругий элемент и записывать зависимость силы от перемещения его конца, то кривая растяжения резины при накоплении в ней энергии будет отличаться от кривой ее сокращения при выделении энергии. Эти две кривые образуют так называемую гистерезисную петлю, характеризующую потери энергии на упругий гистерезис (рис. 76). И чем больше растягивать резину, т. е. накапливать в ней энергию, тем выше потери на упругий гистерезис. Кроме того, чем дольше сохраняется энергия в растянутой резине, тем больше петля гистерезиса и тем меньше энергии будет возвращено обратно; гистерезисные потери постепенно разрушают резину, и свойства ее меняются. Все это (мы уже не говорим о других недостатках) ограничивает применение резиновых упругих элементов для аккумулирования энергии в точных, долговечных и надежных приборах и машинах. Широко применяются резиновые аккумуляторы энергии в моделях в качестве резиномоторов.


Рис. 76. График растяжения резинового жгута

И о том, что резина значительно пригоднее для накопления энергии, чем пружина, говорит тот факт, что с резиномоторами летает множество моделей самолетов и вертолетов, а с пружиной еще ни одна модель не поднялась в воздух!

Как помочь «Формуле-1»?

И, собственно, не только «Формуле-1», а любому автомобилю – стать более динамичным. Просто на «Формуле-1» это выглядело бы поэффектнеее.

Если маховик – такой емкий накопитель энергии, то почему бы от него не приводить транспортные средства, как от двигателя? Раскрутить маховик электромотором – и поехали!

Да, есть такие транспортные машины, например тележки для внутризаводских перевозок (рис. 77). Ходят они вперед и назад, могут и остановиться. Только не могут самостоятельно изменять скорость, она сама меняется – все убывает по мере снижения запаса энергии в маховике.



Рис. 77. Маховичная грузовая тележка:

1 – редуктор; 2 – рукоять хода и реверса; 3 – рукоять сцепления; 4 – маховик; 5 – электродвигатель; 6 – платформа; 7 – шасси


Рис. 78. Швейцарский маховичный автобус – гиробус (а) и его маховик (б)

Для автомобиля такое поведение неприемлемо. Он должен изменять свою скорость, как того захочет водитель. Для этого между маховиком и колесами машины должна быть бесступенчатая трансмиссия. Ступенчатая коробка передач тут не подходит, каждое переключение передачи тут будет сопровождаться ударом и продолжительным буксованием сцепления – никакой энергии маховика не хватит. Поэтому в первом же маховичном автобусе – гиробусе, построенном еще в 1950-х гг. в Швейцарии (рис. 78, а), была применена бесступенчатая электрическая трансмиссия. Ходил гиробус в Швейцарии, Бельгии, даже в Африке, проходил между подзарядками маховика (рис. 78, б) 1,5 км на трассах протяженностью до 10 км. Но несмотря на появление подобных гиробусов вплоть до настоящих времен то в Европе, то в Америке, трудно назвать их перспективными. Как, впрочем, и любой автомобиль, работающий на накопленной энергии, включая всеми хваленные электромобили. Автор берется доказать это в двух словах.

Первое – если все автомобили переделать на электромобили, или махомобили, как гиробус, то для подзарядки их накопителей не хватит энергии электростанций всего мира. При этом ее уже не везде хватает и так, а тут подключатся автомобили, суммарная мощность которых во много раз больше мощности всех электростанций мира. Второе – если подсчитать КПД обычной электростанции с преобразованиями тока и переброской его на нужное расстояние и учетом потерь в зарядном устройстве и аккумуляторе, можно прослезиться. Этот КПД будет значительно меньше тех 40 %, которые может обеспечить дизель в лучшем случае. А тем более тех 60-70 %, которые обеспечивают так называемые топливные элементы или электрохимические генераторы, непосредственно, бесшумно и экологично переводящие энергию топлива в электроэнергию.

Так что же, вообще никакой накопитель на автомобиле не нужен? Да нет, нужен, только для несколько иной цели. Дело в том, что двигатель почти никогда не работает на автомобиле с максимальным КПД. Для этого он должен работать почти на максимальной мощности, т. е., чтобы было понятнее для водителей, педаль акселератора должна быть уперта в пол (рис. 79). Такое бывает либо на предельной скорости (обычно не менее 150-160 км/ч для современных машин) либо при маневрах – обгонах. В городе, например, средняя мощность двигателя менее одной десятой от установочной. КПД при этом – 5 – 7%, что видно по расходу топлива. А ехать, например, со скоростью 160 км/ч и неэкономично – все топливо уходит на взбалтывание воздуха, и опасно – на большинстве трасс такого не допустит ГАИ.

Рис. 79. Зависимость КПД двигателя от загрузки его по мощности

Что же делать, чтобы заставить двигатель всегда работать на оптимальном, самом экономичном режиме? С маховиком это очень даже просто. Двигатель малой мощности постоянно работает на своем оптимальном режиме, отдавая всю энергию, выработанную с максимальным КПД, маховику. Маховик в этом случае выступает как «банк» для энергии (рис. 80). Если этот «банк» переполнился, двигатель автоматически отключается. Движение же автомобиль получает именно от маховика через бесступенчатую коробку передач. Кроме того, что автомобиль использует для движения самую «экономичную» энергию, на спусках и при торможениях избыточная энергия не теряется в тормозах, а переходит обратно в маховик. Этот процесс называется рекуперацией, и он позволяет дополнительно повысить экономичность автомобиля, в результате чего КПД двигателя может оказаться даже выше своего максимума.


Рис. 80. Схема гибридного силового агрегата автомобиля: 1 – двигатель; 2 – бесступенчатая трансмиссия; 3 – маховик

Немного другая ситуация с электромобилем, использующим топливные элементы. Если помните, только такие электромобили не потребляют дефицитной и дорогой энергии из сети, а сами добывают ее из топлива с КПД, превышающим КПД тепловых электростанций. Но у топливных элементов один крупный недостаток – они не дают большой мощности. 60 Вт на 1 кг массы для них тот предел, когда их КПД еще приемлем. Для 60 кВт – средней мощности легкового автомобиля – их нужно 1 т; это столько же, сколько весит сам автомобиль. А ведь еще нужен электродвигатель, который при больших мощностях очень тяжел.


Рис. 81. Схема новой концепции силового агрегата электромобиля:

1 – топливные элементы; 2 – разгонный электродвигатель; 3 – супермаховик; 4 – бесступенчатая передача


Как же может маховик помочь электромобилю? Да почти так же, как и в предыдущем случае. Маленький топливный элемент, массой 15 кг, постоянно разгоняет через маленький, но высокооборотный электродвигатель (10 кВт мощностью, массой 10 кг), маленький маховик (супермаховик массой 10 кг), а оттуда энергия через бесступенчатую передачу передается на колеса (рис. 81). Торможения и спуски прибавляют энергию в маховик, как и раньше. Силовой агрегат получается столь малым, что помещается в стандартный кузов автомобиля, вместо обычного, с двигателем. Разработчик новой концепции электромобиля – автор этих строк.

Вы, наверное, заметили, что во всех перечисленных случаях силовой агрегат с маховиком, называемый гибридным, или комбинированным, требует бесступенчатой передачи. В этом главная трудность и сложность такого агрегата. Разными бывают такие бесступенчатые передачи – электрическими, гидравлическими или механическими. Предпочтительнее, конечно, механические, так как в них не преобразуется форма энергии, они компактны и экономичны.

Но возникает вопрос: неужели обязательна эта бесступенчатая передача, такая сложная и дорогая? Ведь если бы вместо маховика была заводная пружина, какая бывает на игрушечных механических автомобильчиках, никакая бесступенчатая передача не нужна. Заводная пружина имеет так называемую «мягкую» характеристику, не требующую бесступенчатой передачи. Заводная пружина может стронуть с места неподвижный автомобильчик, «гнать» его уже на большой скорости, если надо, на спуске или при торможении автомобильчика «принять его энергию на себя». Пружине все под силу, да одна беда: энергоемкость пружин чрезвычайно мала – в тысячи раз меньше, чем у супермаховиков. Не годится она для далеких пробегов: сотня-другая метров – предел для игрушки. Но…

Еще перед Отечественной войной 1941-1945 гг. было замечено, что артиллерийский взрыватель, содержащий миниатюрную заводную пружину, срабатывает раньше, чем следует. Ученые поняли, что это возникает из-за вращения снаряда, достаточно быстрого и возникающего из-за нарезки в стволе. Если пружину вращать, ее витки стремятся на периферию (все из-за свойства инерции) с огромной силой, пружина как бы увеличивает свою силу в тысячи раз. А ведь это тот же ленточный супермаховик, только у него не все витки скреплены – внутренние начинают играть роль витков пружины (рис. 82). Такие «мягкие», или «пружинные», супермаховики, изобретенные автором этих строк, уже созданы, правда пока в виде опытных образцов, но испытания показали их работоспособность. Таким «мягким» маховиком можно разогнать автомобиль без использования бесступенчатой передачи; можно и рекуперировать (повторно использовать) энергию при торможениях и спусках. Конечно, такой «мягкий» маховик не может полностью заменить гибридный силовой агрегат с супермаховиком и бесступенчатой передачей.


Рис. 82. «Мягкий» супермаховик

Но для гоночного автомобиля, например, такой маховик – подарок. Представьте себе, что даже небольшой такой маховик массой около 10 кг может дать дополнительную мощность в сотни киловатт в течение 10-15 секунд, что помогло бы, например, «Формуле-1» обогнать при маневрах своих соперников. Расчеты показали, что гоночный автомобиль, снабженный таким же двигателем, что и у других машин, но дополненный «мягким» маховиком, будет непобедим.

Помешать тут может только одно – правила соревнований, весьма жесткие. Но про размер и устройство маховика, которым в принципе снабжен каждый двигатель, – тут пока ни слова! Спешите, спортсмены!

Вращается ли «вечный двигатель»?

С вращением почему-то уже со Средних веков связывают возможность создания «вечных двигателей». «Вечный двигатель» – это такой воображаемый механизм, который безостановочно движет сам себя и, кроме того, совершает еще какую-нибудь полезную работу (например, поднимает груз, качает воду и т. д.). Такого построить пока еще не мог никто, хотя попытки делались уже с древних времен. Бесплодность этих попыток привела людей к твердому убеждению, что «вечный двигатель» невозможен, и к установлению известного всем закона сохранения энергии – фундаментального утверждения современной науки.

На рис. 83 представлен один из старейших проектов «вечного двигателя» вращательного действия, и по сей день изобретаемого фанатиками (или, как сейчас говорят, фанатами) этой идеи. К периферии колеса прикреплены откидные стерженьки с грузами на концах. При всяком положении колеса грузы на правой его стороне будут откинуты дальше от центра, чем на левой, и эта половина должна всегда перетягивать левую, заставляя колесо вращаться вечно. Между тем если изготовить такой двигатель, то он вращаться не будет. В чем же ошибка изобретателя?


Рис. 83. Средневековый «вечный двигатель» со стержнями

Хотя грузы на правой стороне всегда откинуты дальше от центра, но число этих грузов меньше, чем на левой. Например, справа 4 груза, слева же – 8. Вся система уравновешивается, колесо вращаться не станет, а, сделав несколько качаний взад-вперед, остановится.

Уже в позапрошлом веке доказано, что нельзя построить вечный самодвижущийся механизм, выполняющий еще при этом работу. Трудиться над такой задачей – безнадежное дело. В Средние века люди много времени и труда потратили на изобретение «вечного двигателя» (по латыни – perpetuum mobile), но все зря.

Наш великий механик И. П. Кулибин, создавший много изобретений, и в частности первый маховичный экипаж – «самобеглую коляску», потратил много времени и сил на постройку «вечных двигателей». Если уж такой великий человек, прекрасно разбиравшийся в механике, занимался этим делом, то что было делать менее грамотным?

Придумано множество «вечных двигателей», но, естественно, они не работали. В каждом случае изобретатели упускали из виду какое-нибудь обстоятельство, которое смешивало все задуманное.

Вот еще один образец нереального вечного двигателя: колесо с перекатывающимися в нем тяжелыми шарами (рис. 84). Изобретатель полагал, что шары, находящиеся на одной стороне колеса, ближе к краю, заставят своим весом вертеться колесо. Разумеется, этого не произойдет – по той же причине, что и в предыдущем случае.


Рис. 84. «Вечный двигатель» с тяжелыми шарами

Очень часто вращение маховиков, особенно помещенных в вакуум и подвешенных на магнитных подшипниках, вращающихся многие сутки, вызывает аналогию с «вечным двигателем». Но ведь при этом такой маховик полезной работы не совершает, он просто крутится, медленно расходуя запасенную энергию.

Кстати, при наблюдении за вращающимся маховиком возникает ощущение, что у него уменьшается вес. Взвешивание таких вращающихся маховиков-дисков давало тот же результат – вращающийся диск весил меньше неподвижного. Виновата здесь аэродинамика – вращающийся диск отгоняет воздух, создавая у обоих торцов разрежение. Снизу это разрежение притягивает чашу весов, прижимая ее к острию диска, а вверх разрежение втягивает диск свободно (см. схему на рис. 85). Вот вам и причина «антигравитации», о которой так много писали и говорили.



Рис. 85. Почему вращающийся маховик весит меньше неподвижного: 1 – маховик; 2 – чаша весов

Надо сказать, что создает эффект «антигравитации» и маховик, вращающийся даже в вакууме. Это смущало людей даже с учеными степенями. Здесь уже гораздо более «тонкое» явление. Дело в том, что из-за трения в призмах (опорах) весов вибрирующее тело будет всегда казаться легче такого же неподвижного. А вращающийся маховик всегда хоть сколько-нибудь вибрирует из-за неуравновешенности.

Но вернемся к «вечным двигателям». Один из самых удачливых создателей «вечных двигателей», живший до конца своих дней на доходы, полученные за демонстрацию своей машины, – немец Беслер, выступавший под псевдонимом Орфиреус (1680-1745). Вот как рассказывал об этом изобретении известный популяризатор науки Я. И. Перельман.

На прилагаемом рисунке (рис. 86), заимствованном из старинной книги, изображена машина Орфиреуса, какой она была в 1714 г. Вы видите большое колесо, которое будто бы не только вращалось само собой, но и поднимало при этом тяжелый груз на значительную высоту.



Рис. 86. «Самодвижущееся колесо» Орфиреуса, которое чуть не купил Петр I (старинный рисунок)

Слава о чудесном изобретении, которое ученый доктор показывал сначала на ярмарках, быстро разнеслась по Германии, Орфиреус вскоре приобрел могущественных покровителей. Им заинтересовался польский король, затем ландграф Гессен-Кассельский. Последний предоставил изобретателю свой замок и всячески испытывал машину.

Так, в 1717 г., 12 ноября, двигатель, находившийся в уединенной комнате, был приведен в действие; затем комната была заперта на замок, опечатана и оставлена под бдительным караулом двух гренадеров. 14 дней никто не смел даже приближаться к комнате, где вращалось таинственное колесо. Лишь 26 ноября печати были сняты и ландграф со свитой вошел в помещение. И что же? Колесо все еще вращалось «с неослабевающей быстротой». Машину остановили, тщательно осмотрели, затем опять пустили в ход. В течение 40 дней помещение снова оставалось запечатанным; 40 суток караулили у дверей гренадеры. И когда 4 января 1718 г. печати были сняты, экспертная комиссия нашла колесо в движении!

Ландграф и этим не удовольствовался: сделан был третий опыт – двигатель запечатан был на целых 2 месяца. И все-таки по истечении срока его нашли движущимся!

Изобретатель получил от восхищенного ландграфа официальное удостоверение в том, что его «вечный двигатель» делает 50 оборотов в минуту, способен поднять 16 кг на высоту 1,5 м, а также может приводить в действие кузнечный мех и точильный станок. С этим удостоверением Орфиреус и странствовал по Европе. Вероятно, он получал порядочный доход, если соглашался уступить свою машину Петру I не менее чем за 100 тысяч рублей.

Весть о столь изумительном изобретении доктора Орфиреуса быстро разнеслась по Европе, проникнув далеко за пределы Германии. Дошла она и до Петра, сильно заинтересовав падкого до всяких «хитрых махин» царя.

Петр обратил внимание на колесо Орфиреуса еще в 1715 г., во время своего пребывания за границей, и тогда же поручил А. И. Ос-терману, известному дипломату, познакомиться с этим изобретением поближе; последний вскоре прислал подробный доклад о двигателе, хотя самой машины ему не удалось видеть. Петр собирался даже пригласить Орфиреуса, как выдающегося изобретателя, к себе на службу и поручил запросить о нем мнение Христиана Вольфа, известного философа того времени (учителя Ломоносова).

Знаменитый изобретатель отовсюду получал лестные предложения. Великие мира сего осыпали его высокими милостями; поэты слагали оды и гимны в честь его чудесного колеса. Но были и недоброжелатели, подозревавшие здесь искусный обман. Находились смельчаки, которые открыто обвиняли Орфиреуса в плутовстве; предлагалась премия в 1 тысячу марок тому, кто разоблачит обман. В одном из памфлетов, написанных с обличительной целью, мы находим рисунок, воспроизведенный здесь. Тайна «вечного двигателя», по мнению разоблачителя, кроется просто в том, что искусно спрятанный человек тянет за веревку, намотанную незаметно для наблюдателей на часть оси колеса, скрытую в стойке (рис. 87).


Рис. 87. Разоблачение секрета колеса Орфиреуса (старинный рисунок)

Тонкое плутовство было раскрыто случайно только потому, что «ученый доктор» поссорился со своей женой и служанкой, посвященными в его тайну. Не случись этого, мы, вероятно, до сих пор оставались бы в недоумении относительно «вечного двигателя», наделавшего столько шума. Оказывается, «вечный двигатель» действительно приводился в движение спрятанными людьми, незаметно дергавшими за тонкий шнурок. Этими людьми были брат изобретателя и его служанка.

Но настоящие ученые даже тех времен были резко против «вечных двигателей». Посланец Петра I Шумахер, которому император поручил изучить вопрос о «вечных двигателях», писал в Петербург, что французские и английские ученые «ни во что почитают все оные перепетуи мобилес и сказывают, что оное против принципиев математических».

Перпетуум-мобиле с человеческим лицом

Непонятно, для чего люди тратили столько сил на поиски «вечного двигателя», когда вокруг – неисчерпаемое море энергии. Неужели не проще поставить ветряк и с его помощью получать даровую энергию ветра, чем тратить жизнь на создание сложнейших и, главное, неработоспособных «вечных двигателей»? В то время, когда Кулибин бесполезно тратил свою жизнь и талант на вечные двигатели, мельники мололи зерно на абсолютно даровой и бесплатной энергии ветра и текущей воды.

Но раз уж мы заговорили о «чудесных» механизмах, то продолжим эту тему. Мы уже знаем, что тело не может привести себя в движение внутренними силами. А может ли оно привести себя этими же внутренними силами во вращение? По законам механики вопрос предполагает резко отрицательный ответ. Но давайте сделаем простейший эксперимент, вроде бы доказывающий обратное. Для этого нам потребуется прибор, называемый платформой, или скамьей, Жуковского (см. рис. 53). Такие обычно имеются в школах в физических кабинетах, но его несложно сделать и самому, хотя бы из двух деревянных дисков, металлической оси и двух подшипников. Продаваемые в магазинах диски «Грация» тут непригодны из-за большого сопротивления вращению.

Итак, опыт первый. Станем на скамью Жуковского и попытаемся раскрутиться. Если сопротивления в подшипниках очень малы (а именно такой прибор нам и нужен!), у нас ничего не выйдет. Мы заводим руки вправо, сами двигаемся влево. Возвращаем руки на прежнее место, и туловище занимает прежнее положение. Казалось бы, все в рамках законов механики.

Но попробуйте сделать такой опыт. Отведите правую руку в сторону, лучше с какой-нибудь тяжестью – гантелью, утюгом и т. д., и резко поведите ею налево. Туловище повернется слева направо. Затем осторожно поднимите эту же руку вверх, и, проведя ее через верх в плоскости оси вращения, опустите в противоположную сторону. Затем повторите первое движение опять. Продолжая выполнять эти, казалось бы, нелепые упражнения, мы неуклонно поворачиваем себя своими же внутренними силами в одном и том же направлении, явно нарушая законы механики.

И второй опыт, поистине с первого взгляда шокирующий. Поставьте скамью Жуковского чуть наклонно, подложив, например, под нее с одной стороны книгу, дощечку и тому подобный предмет. Наклон диска должен быть что-то около 5°. Затем станьте на этот диск, и вы почувствуете… что начинаете раскручиваться! Сами, без какой-либо посторонней помощи или телодвижений. Обычно удержаться на таком диске более минуты бывает невозможно, и человек в самых нелепых позах слетает на пол.

Когда автор впервые изготовил себе скамью Жуковского и поставил ее в прихожей, где пол был неровный, он испытал на себе это «самораскручивание». Будучи профессором механики и не веря в чудеса, автор почти целую ночь вскакивал на диск, который, конечно же, раскручивал его и непременно сбрасывал на пол. К утру автор сделал две важные вещи: во-первых, научился удерживаться на изобретенном «самораскручивателе», а во-вторых, понял, почему это все происходит.

«Самораскручиватель» производил такое ошеломляющее впечатление на «экспериментаторов», что его показали по телевидению, где автор на улице предлагал прохожим стать на диск и удержаться. Ни один из прохожих не смог этого сделать, и автор в шутку назвал этот прибор «вечным двигателем».

Телевидение – страшная сила, смотрят ведь миллионы. Скоро автор был засыпан письмами, на которые при всем желании не смог бы ответить. Все просили продать им «вечный двигатель». Кто для чего – освещения квартиры, сбивания масла, других бытовых нужд. Надо сказать правду: несколько дисков автор все-таки продал. Но не в качестве «вечного двигателя», а в качестве аттракциона. Причем купили его предприниматели из США и других зарубежных стран.

На следующей передаче (была такая научно-познавательная телепрограмма «Это вы можете») автор уже подробно рассказал об устройстве этого «вечного двигателя» и о принципе его действия. Вот он.

Дело в том, что, стоя наклонно, человек инстинктивно пытается выпрямиться, стать вертикально. При этом давление подошв человека на диск смещается на верхнюю его половину (не забывайте, что диск стоит наклонно!), и он, конечно же, проворачивается. Диск этот, как наклонные весы, если «чувствует» перегруз одной «чаши» (половины диска), то тотчас опускает ее и поднимает пустую чашу. Человек автоматически пытается снова выпрямиться и снова давит на верхнюю половину. И так до того момента, пока диск не сбросит его на пол из-за быстрого вращения. Разумеется, гиря или статуя человека, поставленная на диск, так и будет стоять на нем неподвижно. Вот так, стоя как статуя, и научился автор удерживаться на диске под утро…

Таков принцип действия «вечного двигателя» «с человеческим лицом». Теперь о первом опыте. Автор его специально усложнил, делая рукой замысловатые движения, чтобы труднее было догадаться. Можно вращаться и так: крутить над головой руку с грузом. Туловище при этом будет вращаться в другую сторону согласно всем законам механики. Смущает здесь всех именно «человеческое лицо». Поворачивается «человеческое лицо» – значит, есть вращение, и создается впечатление, будто человек поворачивается без приложения внешних сил. Ведь рука с грузом «лица» не имеет, вот мы и не считаем ее движение вращением, а зря… Самое обычное вращение вокруг оси. Кстати, кошки в падении именно так и сохраняют свое равновесие, падая на лапы. В начале падения даже спиной вниз кошка автоматически оценивает, куда ей ближе и удобнее повернуться, а затем начинает быстро вращать оттопыренным хвостом в противоположную сторону. Туловище, разумеется, поворачивается в другую… Вот так это симпатичное животное использует законы механики.

Но представим себе, что мы все-таки хотим получать энергию от человека. Не вращаясь на диске, конечно, а к примеру, вращая педали, связанные с генератором. Кстати, такие предложения приходится часто читать даже в серьезной литературе. Средний человек, судя по калорийности поедаемой им пищи и выпиваемых напитков (кстати, даже водка очень калорийна!), мог бы слегка отапливать квартиру. Но не освещать, ибо для этого потребуется мощность в 150-300 Вт. А такую мощность в течение всего дня – 6 – 8 часов и не любая лошадь «потянет».

Ведь для определения эталона мощности одна из самых сильных лошадей была загнана насмерть при развитии мощности в 1 лошадиную силу (736 Вт) в течение нескольких часов.

Теперь поговорим о человеке. Что такое 150 Вт применительно к человеку? Это пудовая гиря, поднимаемая с земли на вытянутую руку (рывок) каждые 2 секунды непрерывно; центр масс гири поднимается при этом примерно на 2 м. Автор сам человек неслабый, штангист, регулярно тренируется, но после 3 минут такой работы аж взмок от нагрузки. Попробуйте то же самое, замерьте время, в течение которого вы осиливаете это упражнение, а затем поделите 6 – 8 часов на полученное время, выраженное в часах. Уверен, что у вас получится двух-, а то и трехзначная цифра. Вот во сколько раз преувеличены возможности человека.

Меньшие мощности человек переносит легче. Измерять их лучше всего на велотренажере, где на современных устройствах мощность высвечивается прямо на табло, а на старых упрощенных моделях приборы (динамометр и спидометр) показывают силу и скорость, приведенные к ободу колеса тренажера. Выразите силу в ньютонах, а скорость в метрах в секунду, и, перемножив силу на скорость, получите мощность в ваттах.

Как же быть со средней мощностью на протяжении, например, 7 часов? Сядьте на велотренажер и постарайтесь в течение какого-то промежутка времени развивать постоянную мощность. Это можно реально сделать, поставив динамометр на постоянную нагрузку и соблюдая постоянную скорость вращения педалей, с помощью спидометра. Затем умножьте полученную мощность на время вашей работы и получите работу в джоулях. На современных дорогих тренажерах эта цифра получается автоматически даже при переменной нагрузке. Работая и отдыхая в течение 7 часов, вы, сложив полученную сумму работ, определяете работу, выполненную вами за 7 часов, т. е. за 25 200 секунд. Поделите работу в джоулях на время в секундах и получите мощность в ваттах. Не огорчайтесь, если получится очень малая средняя мощность, это так и есть. Если вы, конечно, не олимпийский чемпион по велоспорту.

Кстати, о чемпионах. Очень сильные люди (например, штангисты) при рывке штанги, могут развивать и 1,5 – 2 кВт, но очень кратковременно – 2 – 3 секунды, не более. А средняя мощность обычного человека за 6 – 8 часов, увы, очень близка к мощности карманного фонарика и равна всего нескольким ваттам. Медленно едущий велосипедист развивает 20 Вт, но попробуйте непрерывно проехать 7 часов!

Между тем в справочниках по физике приходится читать, что средняя мощность человека – именно 150-300 Вт. Так имейте в виду, что это мощность не механическая, а большей частью тепловая. Допустим, хозяйка подметает комнату: около 20 Вт она тратит на механическую работу, а остальное – на отопление комнаты!

Так что рассчитывать на какие-нибудь солидные мощности человека, например, для передвижения крупных мускульных автомобилей, мускулолетов и т. д. не приходится!

Можно ли сдвинуть земную ось?

Вернемся снова к нашей Земле. Мы уже знаем о том, что ось Земли наклонена к плоскости ее обращения вокруг Солнца, знаем, что она прецессирует, знаем, как определить направление прецессии и гироскопического момента. А с такими знаниями мы можем попробовать получить энергию даже от вращения Земли. Луна все равно тормозит Землю, и всю энергию ее вращения тратит на приливы и отливы океанов. Так попробуем «отобрать» от этой энергии хоть часть.

Представим себе на полюсе Земли огромный маховик, вращающийся в плоскости, перпендикулярной плоскости вращения Земли. Если бы маховик просто пассивно сопротивлялся любому изменению положения оси в пространстве, то плоскость его вращения оставалась бы неподвижной, а вокруг него вращалась бы Земля. Это относительное вращение могло быть уловлено генераторами, и мы получили бы даровую электроэнергию.

Этот проект, конечно, легко разоблачить. Мы уже знаем, что вращающийся маховик не просто пассивно сопротивляется повороту его оси, а прецессирует. А эта прецессия очень скоро совместит ось вращения маховика с осью вращения Земли, и тогда отбор энергии закончится.


Рис. 88. Проект использования энергии вращения Земли: маховик на пружине

Вот другой проект, который не так просто разоблачить. Маховик сидит в рамке на пружине кручения и, колеблясь, крутится то в одном, то в другом направлении (рис. 88). Для простоты потерями в пружине и аэродинамическим потерями пренебрежем. Итак, при вращении маховика в одном направлении он будет прецессировать в одну сторону, при перемене вращения – в другую. Эта прецессия будет происходить под действием вращения Земли. Стало быть, энергию можно «снимать» от относительного вращения постоянно, так как ось вращения маховика никогда не совместится с осью вращения Земли?

Этого, оказывается, сделать нельзя, так как при деформации пружины ось вращения маховика изменится и появится момент, компенсирующий момент торможения Земли.


Рис. 89. Опыты с переворачиванием гигантского маховика

Или совсем уже простой опыт. Представим себе, что на полюсе Земли находится огромный маховик, вращающийся с той же угловой скоростью, что и сама Земля, т. е. неподвижный относительно нее. А затем перевернем маховик на 180° каким-нибудь мощным механизмом за ось в подшипниках и приблизим его снова к Земле (рис. 89). При этом маховик будет вращаться уже в другую сторону и относительная скорость его вращения будет 2 оборота в сутки. И эту скорость можно легко «снять» с маховика, затратив ее на работу. Маховик снова остановится, его скорость сравняется со скоростью Земли, потом мы его снова повернем и т. д. Значит, можно постепенно остановить Землю, используя ее кинетическую энергию? Неужели инерция вращения Земли «уничтожится» без всякого воздействия извне, внутренними средствами?

Естественно, нет. Объяснение этого парадокса заключается в том, что, переворачивая маховик, мы вызываем гироскопический момент, разгоняющий Землю ровно настолько, насколько она затормозится при соприкосновении с маховиком. Так что скорость вращения Земли при переворачивании маховика никак не изменится, хотя энергия на его переворачивание будет затрачена, но полностью перейдет в тепло при соприкосновении маховика с Землей.

Теперь ясно, что энергии от вращения Земли «внутренними» средствами не получишь. Так можно ли вообще внутренними возможностями ускорить или замедлить вращение Земли?

Надо сказать, что это вопрос скорее философского плана, чем механического. Судя по предыдущему, мы можем раскрутить свое туловище в одну сторону, вращая рукой в другую. Если руку не считать своей принадлежностью, то можно сказать, что мы можем себя раскрутить своими внутренними усилиями.

Так и с Землей. Любой наш шаг, любой автомобиль, движущийся по поверхности Земли, увеличивает или уменьшает скорость ее вращения, но очень ненамного. А можно ли намного?

Можно. Если, например, создать океанское течение наподобие Гольфстрима, но вдоль экватора (где это возможно, например, в Тихом океане), причем обязательно проходящее в одном направлении то ли по вращению Земли, то ли против. Такое можно представить пока только в Тихом океане, затем это течение должно перейти в Индийский океан, что достаточно просто сделать через проливы в островах Океании, потом нужно будет либо обогнуть Африку с юга, либо сильно расширить Суэцкий канал, Гибралтар и Баб-эль-Мандебский пролив, затем лучше всего пустить течение через Панамский канал, расширив его на всю Центральную Америку. Что ж, великая цель – великие затраты!

Зато, пустив течение против вращения Земли, мы противодействием, так называемым «реактивным» моментом (тем самым, которым мощная дрель скручивает нам руки!), раскрутим Землю быстрее. Мы можем приблизиться к тем 9-часовым суткам, которые были при зарождении жизни на Земле.

С меньшими энергетическими затратами мы можем пустить течение по вращению Земли, т. е. с запада на восток, и замедлить вращение планеты. Можем в принципе сделать день, равный году, и тогда суша Земли будет обращена к Солнцу одной стороной со всеми вытекающими отсюда последствиями как для этой стороны, так и для другой, которая останется в тени.

Но если мы озабочены экологией и не хотим создавать новых океанических течений, то проще всего на Антарктиде (там хоть есть суша) установить, лучше под землей с выкаченным из этого подземелья воздухом, громадный маховик из какого-нибудь сверхпрочного материала на громадных магнитных подшипниках (рис. 90). Технически, конечно, это все можно сделать, но каковы будут затраты? А потом надо будет этот маховик раскрутить в ту или другую сторону для разгона или торможения Земли. В этом случае и суша, и вода будут двигаться вместе.


Рис. 90. Супермаховик в недрах Антарктиды

И наконец, сакраментальный вопрос о сдвиге оси Земли, то, что хотели сделать герои Жюля Верна выстрелом из сверхпушки. Что ж, и это можно устроить, с помощью тех же океанических течений, только в меридиональном направлении, например, довести Гольфстрим до противоположной стороны и через Тихий океан, в обход Антарктиды, замкнуть его в Мексиканском заливе. Но это плохо для России – тогда Северный полюс начнет «наступать» на нашу территорию и окончательно заморозит ее.

Можно пустить это течение по тому же пути, но в другую сторону, тогда Северный полюс будет продвигаться в район Канады и далее – на США. И если мы хоть привычны к холоду, то что будут делать теплолюбивые жители Америки?

Можно «выпрямить» ось Земли и исключить смену времен года. На экваторе будет всегда лето, на полюсах – зима, а между ними смесь осени и весны. Скучновато получается!


Рис. 91. Маховик для поворота оси Земли (схема)

Все вышесказанное можно получить и с помощью того же подземного маховика, только установленного лучше всего на экваторе (рис. 91). В Африке, например, или в джунглях Южной Америки – места хватит! Можно и у нас в Сибири – простору там еще больше, но эффект будет примерно в 1,5 раза слабее. Широты не те!

Естественно, все это – манипуляции с ориентацией Земли и ее угловой скоростью, основанные на наших принципиальных внутренних возможностях. Природа осуществляет все это своими «внешними» силами и без нашего желания.

Одно можно сказать в утешение тем, кто возмущен этими манипуляциями с Землей. Если даже мы, земляне, будем в состоянии построить эти гигантские маховики, то мы не найдем тех колоссальных энергетических ресурсов, которые могли бы раскрутить эти маховики. Если, конечно, не усилим свою энергетику в сотни и тысячи раз!