Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Микросхема NCP1014 представляет собой ШИМ-контроллер с фиксированной частотой преобразования и встроенным высоковольтным ключом. Дополнительные внутренние блоки, реализованные в составе микросхемы (см. рис. 1), позволяют ей обеспечить весь спектр функциональных требований, предъявляемых к современным источникам питания.

Рис. 1.

Контроллеры серии NCP101X были подробно рассмотрены в статье Константина Староверова в номере 3 журнала за 2010 год, поэтому, в статье мы ограничимся рассмотрением лишь ключевых особенностей микросхемы NCP1014 , а основное внимание уделим рассмотрению особенностей расчета и механизма работы ИП, представленного в эталонном дизайне.

Особенности контроллера NCP1014

  • Интегрированный выходной 700-вольтовый MOSFET-транзистор с малым сопротивлением открытого канала (11Ом);
  • обеспечение выходного тока драйвера до 450мА;
  • возможность работы на нескольких фиксированных частотах преобразования- 65 и 100кГц;
  • частота преобразования варьируется в пределах ±3…6% относительно ее предустановленного значения, что позволяет «размыть» мощность излучаемых помех в пределах определенного частотного диапазона и тем самым снизить уровень EMI;
  • встроенная высоковольтная система питания способна обеспечить работоспособность микросхемы без применения трансформатора с третьей вспомогательной обмоткой, что в значительной мере упрощает намотку трансформатора. Данная особенность обозначается производителем как DSS (Dynamic Self-Supply — автономное динамическое питание), однако его использование ограничивает выходную мощность ИП;
  • возможность работать с максимальной эффективностью при малых токах нагрузки благодаря режиму пропуска импульсов ШИМ, что позволяет добиться малой мощности холостого хода- не более 100мВт при питании микросхемы от третьей вспомогательной обмотки трансформатора;
  • переход в режим пропуска импульсов происходит при снижении тока потребления нагрузки до значения 0,25 от номинально заданного, что снимает проблему генерации акустических шумов даже при использовании недорогих импульсных трансформаторов;
  • реализована функция плавного запуска (1мс);
  • вывод обратной связи по напряжению напрямую подключается к выходу оптопары;
  • реализована система защиты от короткого замыкания с последующим возвратом в нормальный режим работы после его устранения. Функция позволяет отслеживать как непосредственно короткое замыкание в нагрузке, так и ситуацию с обрывом цепи обратной связи в случае повреждения развязывающей оптопары;
  • встроенный механизм защиты от перегрева.

Контроллер NCP1014 выпускается в корпусах трех типов — SOT-223, PDIP-7 и PDIP-7 GULLWING (см. рис. 2) с расположением выводов, показанном на рис. 3. Последний корпус является особой версией корпуса PDIP-7 со специальной формовкой выводов, что делает его пригодным для поверхностного монтажа.

Рис. 2.

Рис. 3.

Типовая схема применения контроллера NCP1014 в обратноходовом (Flyback ) преобразователе представлена на рисунке 4.

Рис. 4.

Метод расчета ИП на базе контроллера NCP1014

Рассмотрим метод пошагового расчета обратноходового преобразователя на базе NCP1014 на примере эталонной разработки ИП выходной мощностью до 5 Вт для питания системы из трех последовательно-включенных светодиодов . В качестве светодиодов рассмотрены одноваттные белые светодиоды с током нормировки 350 мА и падением напряжения 3,9 В.

Первым шагом является определение входных, выходных и мощностных характеристик разрабатываемого ИП:

  • диапазон входного напряжения — Vac(min) = 85В, Vac(max) = 265В;
  • выходные параметры- Vout= 3х3,9В ≈ 11,75В, Iout = 350мА;
  • выходная мощность- Pout= VoutхIout = 11,75 Вх0,35 А ≈ 4,1Вт
  • входная мощность- Pin = Pout/h, где h — оценочный КПД = 78%

Pin = 4,1 Вт/0,78 = 5,25 Вт

  • диапазон входного напряжения по постоянному току

Vdc(min) = Vdc(min) х 1,41 = 85 х 1,41 = 120 В (dc)

Vdc(max) = Vdc(max) х 1,41 = 265 х 1,41 = 375 В (dc)

  • средний входной ток — Iin(avg) = Pin / Vdc(min) ≈ 5,25/120 ≈ 44мА
  • пиковый входной ток- Ipeak= 5хIin(avg) ≈ 220мА.

Первым входным звеном является предохранитель и EMI-фильтр, и их выбор является вторым шагом при проектировании ИП. Предохранитель должен выбираться исходя из значения тока разрыва, и в представленной разработке выбран предохранитель с током разрыва 2 А. Мы не будем углубляться в процедуру расчета входного фильтра, а лишь отметим, что степень подавления синфазных и дифференциальных помех в значительной мере зависит от топологии печатной платы, а также близости расположения фильтра к разъему питания.

Третьим шагом является расчет параметров и выбор диодного моста. Ключевыми параметрами здесь являются:

  • допустимое обратное (блокирующее) напряжение диода- VR ≥ Vdc(max) = 375В;
  • прямой ток диода- IF ≥ 1,5хIin(avg) = 1,5х0,044 = 66мА;
  • допустимый ток перегрузки (surge current ), который может достигать пятикратного значения среднего тока:

IFSM ≥ 5 х IF = 5 х 0,066 = 330 мА.

Четвертым шагом является расчет параметров входного конденсатора, устанавливаемого на выход диодного моста. Размеры входного конденсатора определяются пиковым значением выпрямленного входного напряжения и заданным уровнем входных пульсаций. Больший входной конденсатор обеспечивает более низкие значения пульсаций, но увеличивает пусковой ток ИП. В общем случае емкость конденсатора определяется следующей формулой:

Cin = Pin/, где

fac — частота сети переменного тока (60 Гц для рассматриваемого дизайна);

DV — допустимый уровень пульсаций (20% от Vdc(min) в нашем случае).

Cin = 5,25/ = 17 мкФ.

В нашем случае мы выбираем алюминиевый электролитический конденсатор емкостью 33 мкФ.

Пятым и основным шагом является расчет моточного изделия — импульсного трансформатора. Расчет трансформатора является наиболее сложной, важной и «тонкой» частью всего расчета источника питания. Основными функциями трансформатора в обратноходовом преобразователе является накопление энергии при замкнутом управляющем ключе и протекании тока через его первичную обмотку, а затем — ее передача во вторичную обмотку при отключении питания первичной части схемы.

С учетом входных и выходных характеристик ИП, рассчитанных на первом шаге, а также требования по обеспечению работы ИП в режиме непрерывного тока трансформатора, максимальное значение коэффициента заполнения (duty cycle ) равно 48%. Все расчеты трансформатора мы будем проводить, основываясь на данном значении коэффициента заполнения. Обобщим расчетные и заданные значения ключевых параметров:

  • частота работы контроллера fop= 100 кГц
  • коэффициент заполнения dmax= 48%
  • минимальное входное напряжение Vin(min) = Vdc(min) — 20% = 96В
  • выходная мощность Pout= 4,1Вт
  • оценочное значение КПДh = 78%
  • пиковое значение входного тока Ipeak= 220мА

Теперь мы можем произвести расчет индуктивности первичной обмотки трансформатора:

Lpri = Vin(min) х dmax/(Ipeak х fop) = 2,09 мГн

Соотношение количества витков обмоток определяется уравнением:

Npri/Nsec = Vdc(min) х dmax/(Vout + V F х (1 — dmax)) ≈ 7

Нам осталось проверить способность трансформатора «прокачать» через себя требуемую выходную мощность. Сделать это можно с помощью следующего уравнения:

Pin(core) = Lpri х I 2 peak х fop/2 ≥ Pout

Pin(core) = 2,09 мГн х 0,22 2 х 100 кГц/2 = 5,05 Вт ≥ 4,1 Вт.

Из результатов следует, что наш трансформатор может прокачать требуемую мощность.

Можно заметить, что здесь мы привели далеко не полный расчет параметров трансформатора, а лишь определили его индуктивные характеристики и показали достаточную мощность выбранного решения. По расчету трансформаторов написано множество трудов, и читатель может найти интересующие его методики расчета, например в или . Освещение этих методик выходит за рамки данной статьи.

Электрическая схема ИП, соответствующая проведенным расчетам, представлена на рисунке 5.

Рис. 5.

Теперь пришла пора ознакомиться с особенностями приведенного решения, расчет которых не был приведен выше, но которые имеют большое значение для функционирования нашего ИП и понимания особенностей реализации защитных механизмов, реализуемых контроллером NCP1014.

Особенности работы схемы, реализующей ИП

Вторичная часть схемы состоит из двух основных блоков — блока передачи тока в нагрузку и блока питания цепи обратной связи.

При замкнутом управляющем ключе (прямой режим) работает схема питания цепи обратной связи, реализованная на диоде D6, токозадающем резисторе R3, конденсаторе C5 и стабилитроне D7, задающем совместно с диодом D8 требуемое напряжение питания (5,1 В) оптопары и шунт-регулятора IC3.

Во время обратного хода энергия, запасенная в трансформаторе, передается в нагрузку через диод D10. Одновременно осуществляется зарядка накопительного конденсатора C6, который сглаживает выходные пульсации и обеспечивает постоянное напряжение питания нагрузки. Ток нагрузки задается резистором R6 и контролируется шунт-регулятором IC3.

ИП имеет защиту от отключения нагрузки и короткого замыкания нагрузки. Защиту от КЗ осуществляет шунт-регулятор TLV431, основная роль которого — регулятор цепи ОС. Короткое замыкание возникает при условии короткого пробоя всех нагрузочных LED (в случае выхода из строя одного или двух LED их функции принимают на себя параллельные стабилитроны D11…D13). Значение резистора R6 подбирается так, чтобы при рабочем токе нагрузки (350 мА в нашем случае) падение напряжения на нем составляло менее 1,25 В. При возникновении КЗ ток через R6 резко возрастает, что приводит к открыванию шунта IC3 и включению оптопары IC2 и заставляет контроллер NCP1014 уменьшить выходное напряжение.

Механизм защиты от отключения нагрузки основан на включении стабилитрона D9 параллельно нагрузке. В условиях размыкания цепи нагрузки и, как следствие, повышения выходного напряжения ИП до 47 В происходит открытие стабилитрона D9. Это приводит к включению оптопары и заставляет контроллер снизить выходное напряжение.

Желаете познакомиться с NCP1014 лично? — Нет проблем!

Для тех, кто перед началом разработки собственного ИП на базе NCP1014 хочет убедиться в том, что это действительно простое, надежное и эффективное решение, компания ONSemiconductor выпускает несколько типов оценочных плат (см таблицу 1, рис. 6; доступны для заказа через компанию КОМПЭЛ).

Таблица 1. Обзор оценочных плат

Код заказа Наименование Краткое описание
NCP1014LEDGTGEVB Драйвер светодиодов мощностью 8 Вт с коэффициентом мощности 0,8 Плата разработана с целью демонстрации возможности построения LED-драйвера с коэффициентом мощности > 0,7 (стандарт Energy Star) без применения дополнительной микросхемы PFC. Выходная мощность (8 Вт) делает представленное решение идеальным для питания структур подобных Cree XLAMP MC-E, содержащих четыре последовательных светодиода в одном корпусе.
NCP1014STBUCGEVB Неинвертирующий понижающий преобразователь Плата является доказательством утверждения, что контроллера NCP1014 достаточно для построения ИП низкого ценового диапазона для жестких условий работы.

Рис. 6.

Кроме того, существует еще несколько примеров готового дизайна различных ИП, помимо рассмотренного в статье. Это и 5 Вт AC/DC-адаптер для сотовых телефонов , и еще один вариант ИП для LED , а также большое количество статей по применению контроллера NCP1014, которые вы можете найти на официальном сайте компании ONSemiconductor — http://www.onsemi.com/ .

Компания КОМПЭЛ является официальным дистрибьютором ONSemiconductor и поэтому на нашем сайте вы всегда можете найти информацию о доступности и стоимости микросхем, выпускаемых ONS, а также заказать опытные образцы, в том числе и NCP1014.

Заключение

Использование контроллера NCP1014, выпускаемого компанией ONS, позволяет разрабатывать высокоэффективные AC/DC-преобразователи для питания нагрузки стабилизированным током. Грамотное использование ключевых возможностей контроллера позволяет обеспечить безопасность работы конечного ИП в условиях размыкания или короткого замыкания нагрузки при минимальном числе дополнительных электронных компонентов.

Литература

1. Константин Староверов «Применение контроллеров NCP101X/102X при разработке сетевых источников питания средней мощности», журнал «Новости электроники», №3 , 2010, сс. 7-10.

4. Мэк Раймонд. Импульсные источники питания. Теоретические основы проектирования и руководство по практическому применению/Пер. с англ. Пряничникова С.В., М.: Издательский дом «Додэка-ХХI», 2008, — 272 с.: ил.

5. Вдовин С.С. Проектирование импульсных трансформаторов, Л.: Энергоатомиздат, 1991, — 208 с.: ил.

6. TND329-D. «5W Cellular Phone CCCV AC-DC Adepter»/ http://www.onsemi.com/pub_link/Collateral/TND329-D.PDF .

7. TND371-D. «Offline LED Driver Intended for ENERGY STAR»/ http://www.onsemi.com/pub_link/Collateral/TND371-D.PDF .

Получение технической информации, заказ образцов, поставка — e-mail:

NCP4589 — LDO-регулятор
с автоматическим энергосбережением

NCP4589 — новый КМОП LDO-регулятор на 300 мА от ON Semiconductor . NCP4589 переключается в режим низкого потребления при малой токовой нагрузке и автоматически переключается обратно в «быстрый» режим, как только нагрузка на выходе превышает 3 мА.

NCP4589 может быть переведен в режим постоянной быстрой работы посредством принудительного выбора режима (управлением по специальному входу).

Основные характеристики NCP4589:

  • Рабочий диапазон входных напряжений: 1,4…5,25В
  • Выходной диапазон напряжений: 0,8…4,0В (с шагом 0,1В)
  • Входной ток в трех режимах:
    • Режим низкого потребления — 1,0 мкА при V OUT < 1,85 В

      Быстрый режим — 55 мкА

      Режим энергосбережения — 0,1 мкА

  • Минимальное падение напряжения: 230мВ при I OUT = 300мА, V OUT = 2,8В
  • Высокий коэффициент подавления пульсаций по напряжению: 70дБ при 1кГц (в быстром режиме).

NCP4620 — LDO-регулятор с широким диапазоном входных напряжений

NCP4620 — это КМОП LDO-регулятор на ток 150 мА от ON Semiconductor с диапазоном входных напряжений от 2,6 до 10 В. Устройство имеет высокую точность на выходе — порядка 1% — с низким температурным коэффициентом ±80 ppm/°C.

NCP4620 имеет защиту от перегрева и вход отключения (Enable), представлен в модификациях со стандартным выходом и выходом с автоматическим разрядом (Auto Discharge).

Основные характеристики NCP4620:

  • Диапазон рабочего входного напряжения от 2,6 до 10В (макс. 12В)
  • Диапазон выходных фиксированных напряжений от 1,2 до 6,0В (сшагом 100мВ)
  • Прямое минимальное падение напряжения- 165мВ (при 100мА)
  • Подавление пульсаций питания- 70дБ
  • Отключение питания микросхемы при перегреве до 165°C

Простейшая схема регулятора яркости светодиодов, представленная в этой статье, с успехом может быть применена в тюнинге автомобилей, ну и просто для повышения комфорта в машине в ночное время, например для освещения панели приборов, бардачков и так далее. Чтобы собрать это изделие, не нужно технических знаний, достаточно быть просто внимательным и аккуратным.
Напряжение 12 вольт считается полностью безопасным для людей. Если в работе использовать светодиодную ленту, то можно считать, что и от пожара вы не пострадаете, так как лента практически не греется и не может загореться от перегрева. Но аккуратность в работе нужна, что бы ни допустить короткого замыкания в смонтированном устройстве и как следствие пожара, а значит сохранить своё имущество.
Транзистор Т1, в зависимости от марки, может регулировать яркость светодиодов общей мощностью до 100 ватт, при условии, что он будет установлен на радиатор охлаждения соответствующей площади.
Работу транзистора Т1 можно сравнить с работой обыкновенного краника для воды, а потенциометра R1 – с его рукояткой. Чем больше откручиваешь – тем больше течёт воды. Так и здесь. Чем больше откручиваешь потенциометр – тем больше течёт ток. Закручиваешь – меньше течёт и меньше светят светодиоды.

Схема регулятора

Для этой схемы нам понадобятся не многочисленные детали.
Транзистор Т1. Можно применить КТ819 с любой буквой. КТ729. 2N5490. 2N6129. 2N6288. 2SD1761. BD293. BD663. BD705. BD709. BD953. Эти транзисторы нужно выбирать в зависимости от того, какую мощность светодиодов вы планируете регулировать. В зависимости от мощности транзистора находится и его цена.
Потенциометр R1 может быть любого типа сопротивлением от трёх до двадцати килом. Потенциометр сопротивлением три килоома лишь немного снизит яркость светодиодов. Десять килоом - убавит почти до нуля. Двадцать – будет регулировать со средины шкалы. Выбирайте, что вам подходит больше.
Если вы будете использовать светодиодную ленту, то вам не придётся заморачиваться с расчётом гасящего сопротивления (на схеме R2 и R3) по формулам, потому что эти сопротивления уже вмонтированы в ленту при изготовлении и всё, что нужно, это подключить её к напряжению 12 вольт. Только нужно купить ленту именно на напряжение 12 вольт. Если подключаете ленту, то сопротивления R2 и R3 исключить.
Выпускают так же светодиодные сборки, рассчитанные на питание 12 вольт, и светодиодные лампочки для автомобилей. Во всех этих устройствах при изготовлении встраивают гасящие резисторы или драйверы питания и их напрямую подключают к бортовой сети машины. Если вы в электронике делаете только первые шаги, то лучше воспользоваться именно такими устройствами.
Итак, с компонентами схемы мы определились, пора приступать к сборке.


Прикручиваем на болтик транзистор к радиатору охлаждения через теплопроводящую изолирующую прокладку (чтобы не было электрического контакта радиатора с бортовой сетью автомобиля, во избежание короткого замыкания).


Нарезаем провод на куски нужной длинны.


Зачищаем от изоляции и лудим оловом.


Зачищаем контакты светодиодной ленты.


Припаиваем провода к ленте.


Защищаем оголённые контакты при помощи клеевого пистолета.


Припаиваем провода к транзистору и изолируем из термоусадочным кембриком.


Припаиваем провода к потенциометру и изолируем их термоусадочным кембриком.

Имеется большое количество различных схемных решений, однако в нашем случае мы разберем несколько вариантов ШИМ регулятор яркости светодиода () на PIC-микроконтроллере.

PIC10F320/322 это безупречный вариант для конструирования различных регуляторов освещения. При этом мы обретаем достаточно конструктивно навороченный прибор с наименьшей стоимостью и незначительными затратами времени на построение. Рассмотрим несколько вариантов диммера.

Первый вариант. Базовый регулятор яркости светодиода в котором изменение яркости свечения светодиодов осуществляется путем вращения ручки переменного , при этом яркость изменяется от 0 до 100%

Яркость свечения светодиодов устанавливается потенциалом сниманием с переменного резистора R1. Это изменяемое напряжение идет на ввод RA0, функционирующий как аналоговый ввод и подсоединенный к входу AN2 АЦП микроконтроллера. Вывод ШИМ RA1 контролирует силовой ключ на транзисторе V1.

Силовой транзистор возможно выбрать произвольный с логическим уровнем управления, то есть это те транзисторы, которые при получении 1…2 вольта на затвор целиком открывают свой канал.

К примеру транзистором IRF7805 возможно управлять током до 13 ампер соблюдая необходимые требования, а при любых других условиях до 5 ампер гарантировано. Разъем CON1 необходим, лишь для внутрисхемного программирования микроконтроллера, для этой же цели необходимы и сопротивления R2 и R5, то есть если микроконтроллер запрограммирован, то все эти радиоэлементы возможно не ставить.

Сопротивление R4 и BAV70 служат для защиты от перенапряжения и неправильного включения источника питания. Емкости C1 и C2 керамические и служат для снижения импульсных помех, и для надежности функционирования стабилизатора LM75L05.

Второй вариант. Здесь управление яркостью светодиодов так же осуществляется переменным резистором, а включение и выключение выполняется кнопками.

Третий вариант. Как видно в схеме отсутствует переменный резистор. В данном варианте управление яркостью свечения светодиодов выполняется исключительно двумя кнопками. Регулировка ступенчатая, изменение яркости происходит с каждым последующим нажатием.

Четвертый вариант. По сути такой же, как и третий вариант, но при удержании нажатой кнопки происходит плавное изменение свечения светодиодов.

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

Схема и принцип её работы

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток - низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -U пит. Как только напряжение на нём достигнет уровня 2/3U пит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -U пит. Достигнув отметки 1/3U пит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

Читайте так же