slonik писал(а):

после выпрямительного моста стоит набор кондеров (в параллель 7 штук) и дальше дроссель.Так вот эти кондеры предусмотрено что можно их подключать перемычками или поле выпрямителя, или после дросселя, или вообще отключать.Так зачем это нужно?И где лучше ставить эти кондеры?И для чего они стоят?

Трибун писал(а):

Для обеспечения условия стабилизации дугового промежутка, источник для полуавтоматической сварки должен иметь жёсткую нагрузочную характеристику и высокую скорость нарастания тока при КЗ. Эти требования особенно актуальны при сварке тонкой проволокой D0,6...0,8мм. С увеличением диаметра проволоки нагрузочная характеристика становится более падающей и требуемая скорость нарастания тока уменьшается. Для коррекции скорости нарастания тока, на классических источниках, дроссель даже делается с отводами (ВС300).

Судя по заявленному току 140А, источник расчитан на сварку тонкой проволокой и скорей всего конденсатор должен включаться до дросселя. При этом индуктивность дросселя должна составлять около 0.2мГн. Включение конденсатора после дросселя практически всегда приводит к излишне большой скорости нарастания тока, что не есть хорошо (резко увеличивается разбрызгивание).

valvol.ru

Электролитические конденсаторы в сварочных инверторах

Бугаев Виктор, Виталий Дидук, Максим Мусиенко

Алюминиевые электролитические конденсаторы – один из главных элементов, обеспечивающих стабильность работы высокочастотных инверторов сварочных аппаратов. Надежные высококачественные конденсаторы для этого вида применения производят компании Hitachi, Samwha, Yageo.

В первых устройствах, использовавших метод электродуговой сварки, применялись регулируемые трансформаторы переменного тока. Трансформаторные сварочные аппараты наиболее популярны и применяются по сей день. Они надежны, просты в обслуживании, однако имеют ряд недостатков: большой вес, высокое содержание цветных металлов в обмотках трансформатора, малую степень автоматизации процесса сварки. Преодолеть эти недостатки возможно при переходе на более высокие частоты тока и уменьшении размеров выходного трансформатора. Идея уменьшить размер трансформатора за счет перехода от частоты электросети 50 Гц на более высокую родилась еще в 40-е годы XX века. Тогда это делали с помощью электромагнитных преобразователей-вибраторов. В 1950 году для этих целей стали использовать электронные лампы – тиратроны. Однако в сварочной технике использовать их было нежелательно по причине низкого КПД и невысокой надежности. Широкое внедрение полупроводниковых приборов в начале 60-х годов привело к активному развитию сварочных инверторов, сперва – на тиристорной основе, а затем – на транзисторной. Разработанные в начале XXI века биполярные транзисторы с изолированным затвором (IGBT-транзисторы) дали новый импульс развитию инверторных аппаратов. Они могут работать на ультразвуковых частотах, что позволяет значительно уменьшить размеры трансформатора и массу аппарата в целом.

Упрощенно структурную схему инвертора можно представить из трех блоков (рисунок 1). На входе стоит бестрансформаторный выпрямитель с параллельно подключенной емкостью, позволяющей поднять напряжение постоянного тока до 300 В. Инверторный блок производит преобразование постоянного тока в переменный высокочастотный. Частота преобразования доходит до десятков килогерц. В состав блока входит высокочастотный импульсный трансформатор, в котором происходит понижение напряжения. Данный блок может изготавливаться в двух вариантах – с использованием однотактных или двухтактных импульсов. В обоих случаях транзисторный блок работает в ключевом режиме с возможностью регулировки времени включения, что позволяет регулировать ток нагрузки. Выходной выпрямительный блок преобразует переменный ток после инвертора в постоянный ток сварки .

Рис. 1. Упрощенная структурная схема сварочного инвертора

Принцип работы сварочного инвертора заключается в поэтапном преобразовании сетевого напряжения. Вначале сетевое переменное напряжение повышается и выпрямляется в предварительном блоке выпрямления. Постоянное напряжение питает высокочастотный генератор на IGBT-транзисторах в инверторном блоке. Высокочастотное переменное напряжение преобразовывается в более низкое с помощью трансформатора и подается на выходной выпрямительный блок. С выхода выпрямителя ток уже можно подавать на сварочный электрод. Ток электрода регулируется схемотехнически путем контроля глубины отрицательной обратной связи. С развитием микропроцессорной техники начали производство инверторных полуавтоматов, способных самостоятельно выбирать режим работы и осуществлять такие функции как «антизалипание», высокочастотное возбуждение дуги, удержание дуги и другие.

Алюминиевые электролитические конденсаторы в сварочных инверторах

Основные компонентные составляющие сварочных инверторов – это полупроводниковые компоненты, понижающий трансформатор и конденсаторы. Сегодня качество полупроводниковых компонентов столь высоко, что при правильной их эксплуатации проблем не возникает. Ввиду того, что устройство работает на высоких частотах и достаточно больших токах, особое внимание следует уделить стабильности работы аппарата – от нее напрямую зависит качество производимых сварочных работ. Наиболее критичными компонентами в данном контексте являются электролитические конденсаторы, от качества которых сильно зависит надежность аппарата и уровень вносимых в электрическую сеть помех.

Наиболее распространенными являются алюминиевые электролитические конденсаторы. Они лучше всего подходят для использования в первичном источнике сетевого ИП. Электролитические конденсаторы имеют высокую емкость, большое номинальное напряжение, малые габариты, и способны работать на звуковых частотах. Такие характеристики относятся к несомненным достоинствам алюминиевых электролитов.

Все алюминиевые электролитические конденсаторы представляют собой последовательно наложенные слои алюминиевой фольги (анод конденсатора), бумажной прокладки, еще одного слоя алюминиевой фольги (катод конденсатора) и еще одного слоя бумаги. Все это сворачивается в рулон и помещается в герметичный контейнер. От анодного и катодного слоев выводятся проводники для включения в цепь. Также алюминиевые слои дополнительно протравливают с целью увеличения площади их поверхности и, соответственно, емкости конденсатора. При этом емкость высоковольтных конденсаторов возрастает примерно в 20 раз, а низковольтных – в 100. Помимо этого вся данная конструкция обрабатывается химическими веществами для достижения требуемых параметров.

Электролитические конденсаторы имеют достаточно непростую структуру, что обуславливает сложность их изготовления и эксплуатации. Характеристики конденсаторов могут сильно меняться при разных режимах работы и климатических условиях эксплуатации. С ростом частоты и температуры снижается емкость конденсатора и ЭПС. При снижении температуры емкость также падает, а ЭПС может возрастать до 100 раз, что, в свою очередь, снижает предельно допустимый ток пульсаций конденсатора. Надежность импульсных и входных сетевых фильтрующих конденсаторов, в первую очередь, зависит от их предельно допустимого тока пульсаций. Протекающие токи пульсаций способны разогревать конденсатор, что служит причиной его раннего выхода из строя.

В инверторах основные назначения электролитических конденсаторов – повышение напряжения во входном выпрямителе и сглаживание возможных пульсаций.

Значительные проблемы в работе инверторов создают большие токи через транзисторы, высокие требования к форме управляющих импульсов, что подразумевает использование мощных драйверов для управления силовыми ключами, высокие требования к монтажу силовых цепей, большие импульсные токи. Все это в значительной степени зависит от добротности конденсаторов входного фильтра, поэтому для инверторных сварочных аппаратов нужно особо тщательно подбирать параметры электролитических конденсаторов. Таким образом, в предварительном блоке выпрямления сварочного инвертора наиболее критичным элементом является фильтрующий электролитический конденсатор, установленный после диодного моста. Рекомендовано устанавливать конденсатор в непосредственной близости к IGBT и диодам, что позволяет устранить влияние индуктивности проводов, соединяющих устройство с источником питания, на работу инвертора. Также установка конденсаторов рядом с потребителями уменьшает внутреннее сопротивление переменному току источника питания, что предотвращает возбуждение усилительных каскадов.

Обычно фильтрующий конденсатор в двухполупериодных преобразователях выбирают таким, чтобы пульсации выпрямленного напряжения не превышали 5…10 В. Следует также учитывать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220 В пульсирующего напряжения, то на конденсаторах будет уже 310 В постоянного напряжения. Обычно же рабочее напряжение в сети ограничивается отметкой в 250 В, следовательно, на выходе фильтра напряжение будет 350 В. В редких случаях сетевое напряжение может подниматься еще выше, поэтому конденсаторы следует выбирать на рабочее напряжение не менее 400 В. Конденсаторы могут иметь дополнительный нагрев благодаря большим рабочим токам. Рекомендованный верхний диапазон температур – не менее 85…105°C. Входные конденсаторы для сглаживания пульсаций выпрямленного напряжения выбирают емкостью 470…2500 мкФ в зависимости от мощности аппарата. При неизменяемом зазоре в резонансном дросселе увеличение емкости входного конденсатора пропорционально увеличивает мощность, отдаваемую в дугу.

В продаже есть емкости, к примеру, на 1500 и 2200 мкФ, но, как правило, вместо одного используют батарею конденсаторов – несколько компонентов одинаковой емкости, включенных параллельно. Благодаря параллельному включению уменьшаются внутренние сопротивление и индуктивность, что улучшает фильтрацию напряжения. Также в начале заряда через конденсаторы протекает очень большой зарядный ток, близкий к току короткого замыкания. Параллельное включение позволяет уменьшить ток, протекающий через каждый конденсатор в отдельности, что увеличивает срок эксплуатации.

Выбор электролитов от Hitachi, Samwha, Yageo

На рынке электроники сегодня можно найти большое количество подходящих конденсаторов от известных и малоизвестных производителей. При выборе оборудования не следует забывать, что при схожих параметрах конденсаторы очень сильно отличаются качеством и надежностью. Наиболее хорошо себя зарекомендовала продукция от таких всемирно известных производителей высококачественных алюминиевых конденсаторов, как Hitachi, Samwha и Yageo. Компании активно разрабатывают новые технологии производства конденсаторов, поэтому их продукция обладает лучшими характеристиками по сравнению с продукцией конкурентов.

Алюминиевые электролитические конденсаторы выпускаются в нескольких форм-факторах:

  • для монтажа на печатную плату;
  • с усиленными выводами-защелками (Snap-In);
  • с болтовыми выводами (Screw Terminal).

В таблицах 1, 2 и 3 представлены серии вышеуказанных производителей, наиболее оптимальные для использования в предварительном блоке выпрямления, а их внешний вид показан на рисунках 2, 3 и 4 соответственно. Приведенные серии имеют максимальный срок службы (в рамках семейства конкретного производителя) и расширенный температурный диапазон.

Таблица 1. Электролитические конденсаторы производства Yageo

Таблица 2. Электролитические конденсаторы производства Samwha

Таблица 3. Электролитические конденсаторы производства Hitachi

Наименование Емкость, мкФ Напряжение, В Ток пульсаций, А Размеры, мм Форм-фактор Срок службы, ч/°C
HP3 470…2100 400, 420, 450, 500 2,75…9,58 30×40, 35×35…40×110 Snap-In 6000/85
HU3 470…1500 400, 420, 450, 500 2,17…4,32 35×45, 40×41…40×101 Snap-In 6000/105
HL2 470…1000 400, 420, 450, 500 1,92…3,48 35×40, 30×50…35×80 Snap-In 12000/105
GXA 1000…12000 400, 450 4,5…29,7 51×75…90×236 Screw Terminal 12000/105
GXR 2700…11000 400, 450 8,3…34,2 64×100…90×178 Screw Terminal 12000/105

Как видно из таблиц 1, 2 и 3, номенклатурная база достаточно широка, и пользователь имеет возможность собрать конденсаторную батарею, параметры которой в полной мере обеспечат требования будущего сварочного инвертора. Наиболее надежными представляются конденсаторы компании Hitachi с гарантированным сроком эксплуатации до 12000 часов, в то время как у конкурентов данный параметр составляет до 10000 часов в конденсаторах Samwha серии JY и до 5000 часов в конденсаторах Yageo серий LC, NF, NH. Правда, этот параметр не указывает на гарантированный выход конденсатора из строя по истечении указанного строка. Здесь имеется в виду только время использования при максимальной нагрузке и температуре. При использовании в меньшем диапазоне температур срок эксплуатации, соответственно, возрастет. По истечении указанного строка возможно также уменьшение емкости на 10% и увеличение потерь на 10…13% при работе на максимальной температуре.

Рис. 2. Электролитические конденсаторы Yageo

Рис. 3. Электролитические конденсаторы Samwha

Рис. 4. Электролитические конденсаторы Hitachi

Примечательно, что в каждой серии можно найти различную конфигурацию выводов конденсатора – с усиленными выводами-защелками или болтовыми выводами. Болтовые выводы дают гарантированную надежность сборки, а конденсаторы с выводами-защелками к надежности добавляют еще и простоту монтажа на печатную плату.

Заключение

Рассмотренные высококачественные алюминиевые электролитические конденсаторы производства компаний Hitachi, Samwha и Yageo позволяют решить практически любую задачу разработки высокочастотного сварочного инверторного аппарата. Отличительной особенностью представленных конденсаторов является их разработка в соответствии с требованиями RoHS (Директива об ограничении использования некоторых вредных веществ в электрическом и электронном оборудовании) и прочими экологическими нормами. За консультацией по применению, а также по вопросу приобретения конденсаторов производства всех трех компаний можно обратиться к их дистрибьютору – компании КОМПЭЛ.

Литература

Получение технической информации, заказ образцов, заказ и доставка.

www.compel.ru

Простой сварочный полуавтомат своими руками

Как сделать самостоятельно сварочный полуавтомат. Этот вопрос волнует многих, поскольку стоимость сварочного полуавтомата для бытовых целей от 300$ и до 800$. Промышленные сварочный полуавтоматы еще дороже. Остается только один вариант - собрать полуавтомат самостоятельно, своими руками. Рассмотрим, из каких основных узлов и деталей состоит сварочный полуавтомат. Основой сварочного полуавтомата, является сварочный силовой трансформатор. Трансформатор желательно иметь готовый, но можно и самому изготовить. Основные требования к трансформатору - при напряжение на выходе 10 - 20В обеспечение номинального выходного тока до 60А. Для регулировки выходного напряжения, при намотки первичной обмотки необходимо делать отводы и предусмотреть вариант переключения.

Конечно, самым сложным в домашнем изготовлении узлом является механизм подачи проволоки. От его работы напрямую будет зависеть качество сварного шва и равномерность подачи проволоки. Наиболее подходящим вариантом изготовления механизма подачи - это редуктор от автомобильного стеклоочистителя в комплекте с электродвигателем.

Т.к. сварка полуавтоматом производится постоянным током, необходимо использовать выпрямитель. Тип выпрямителя зависит от способа намотки сварочного трансформатора. Для нашего варианта, с двумя обмотками, используют два выпрямительных диода ДЛ161-200. Для мостовой схемы выпрямителя - используют четыре выпрямительных диода. Конденсатор 30000х63В предназначен для сглаживания пульсаций напряжения после выпрямителя.

В цепи постоянного тока, после выпрямительных диодов, для улучшения стабильности горения дуги устанавливается дроссель, намотанный на трансформаторный сердечник сечением не менее 35 мм х 35 мм, около 20 витков проводом, диаметр которого не менее диаметра провода на вторичной обмотке сварочного трансформатора.

Питание электродвигателя приводного механизма подачи проволоки от блока питания с выходным напряжением 12 - 15В и током около 5А.

Еще в в сварочном полуавтомате имеются:

электроклапан газа;

электромагнитный пускатель включения сварочного полуавтомата;

рукав для подачи проволоки

и другие мелочи.

Схема сварочного полуавтомата указана ниже:

Переменный резистор используется для регулировки скорости подачи проволоки в процессе работы полуавтомата. При нажатии на кнопку пуск, синхронно включается клапан подачи газа и с помощью реле К1 включается сварочный трансформатор.

Эта схема сварочного полуавтомата является лишь примером. При самостоятельном изготовлении схему полуавтомата можно изменить исходя из имеющимися в наличии комплектующих.

Купил я как то свой полуавтомат трансформаторный. Ну думал мне его хватит на долго, так как я планировал его для сварки и ремонта кузовов автомобиля. В итоге я был разочарован тем, что тонкий металл он просто сжигал в момент касания сварочной проволоки о свариваемую поверхность. А толстый металл примерно 4 мм толщины он просто не проваривал как следует.

В результате этого мне хотелось просто выкинуть его. Обратно в магазин его не понесешь, так как прошло много времени, да и работа у меня не одна. Вот и было решено собрать инвертор для моего девайса чтобы избавиться от трансформатора который работал не понятно как.

На рисунке собственно сама схема. Эта схема была взята с основы сварочного инвертора на 250 ампера, который разработал Евгений Родиков. За что ему спасибо.

Правда пришлось мне изрядно повозиться с этой схемой, чтобы обычный сварочный инвертор у которого мягкая ВАХ (вольтамперная характеристика) стала жесткой и чтобы была обратная связь по напряжению и можно было регулировать с 7 вольтах до 25 вольт. Так как на полуавтомате не нужно регулировать ток ему надо менять напряжение. Что мною и было выполнено.

Для начала нам надо собрать блок питания который будет питать шим генератор и драйвера ключей.

Вот собственно и схема блока питания, она не сложная и думаю не буду вдаваться в подробности и так все понятно.

Принцип работы инвертора

Работа инвертора заключается в следующем. Из сети 220 вольт поступает на диодный мост и выпрямляется потом происходит зарядка конденсаторов большой емкости через токоограничивающий резистор R11.Если бы не резистор то произошел бы сильный бах из за чего выйдет из строя диодный мост. Когда конденсаторы зарядились, таймер на VT1,C6,R9,VD7 включает реле К1 тем самым шунтирует токоограничительный резистор R11 и напряжение в это время на конденсаторах нарастает до 310 вольта. и в это же время включается реле К2 который размыкает цепь резистора R10, который блокирует работу ШИМ генератора собранного на микросхеме UC3845. Сигнал с 6 ноги ШИМ генератора поступает на оптроны через резисторы R12,R13. Далее проходя через оптроны HCPL3120 на драйвера управления силовыми IGBT транзисторами которые запускают силовой трансформатор. после трансформатора выходит большой ток высокой частоты и поступает на диоды тем самым выпрямляется. Контроль напряжения и тока выполнены на оптроне PC817 и токовом датчике построенный на ферритовом кольце через который пропущен провод силового трансформатора.

Начало сборки работы инвертора

Саму сборку можно начинать как угодно. Я лично начинал собирать с самого блока питания,который должен питать шим генератор и драйвера ключей. Проверив работоспособность блока питания она у меня заработала без каких либо доработок и настроек. Следующим этапом я собирал таймер который должен блокировать шим генератор и шунтировать токоограничительный резистор R11, убедившись в его работе, он должен включать реле К1 и К2 в течении времени от 5 секунд до 15 секунд. Если таймер срабатывает быстрее чем нужно то надо увеличить емкость конденсатора С6. После чего я начал сборку шим генератора и драйвера силовых ключей в шим генераторе есть один недочет с резисторами R7 он должен иметь сопротивление 680 Ома R8 1,8ома и конденсатор C5 510p C3 2200p также убедившийся в правильной сборке выставил первоначальную частоту в 50 кГц с помощью резистора R1. При этом сигнал формированный шим генератором должен быть строго прямоугольным 50/50 и ни каких всплесков и выбросов из краев прямоугольников показанные на осциллограмме осциллографа. После я собрал силовые ключи и подав напряжение минус 310 вольт на нижние силовые ключи. плюс верхних силовых ключей я подал питание плюс 310 вольт через лампочку 220 вольт 200 ватт на самой схеме не показано, но надо в питание силовых ключей плюс и минус 310 вольта добавить конденсаторы 0,15мкФ х 1000 вольт 14 штук. это нужно для того чтобы выбросы который будет создавать трансформатор уходили в цепь питания силовых ключей ликвидируя помехи в сети 220 вольта. После чего я начал собирать силовой трансформатор а начиналось у меня все так. Я не знаю какой материал феррита намотал пробную обмотку например 12 витков из медной проволоки 0,7 мм диаметром покрытый лаком включил его между плечами силовых ключей и запустил схему убедившийся что лампочка горит в пол накала чуть чуть подождав примерно 5 или 10 минут выключил схему из розетки дав разрядиться фильтрующим конденсаторам чтобы током не стукнуло проверил сам сердечник силового транса он не должен нагреваться. Если он нагрелся я увеличил число обмоток и таким образом я дошел до 18 витков. И так я намотал трансформатор с расчетом сечений которые написаны на схеме.

Настройка и первый запуск инвертора

Перед настройкой и первым пуском еще раз проверяем в правильной сборке. Убеждаемся в правильной фазировке силового трансформатора и датчика тока на маленьком кольце. Датчик тока обычно подбирается количество витков провода чем больше витков тем больше выходной ток, но не стоит пренебрегать из за того, что можно перегрузить силовые ключи и они запросто могут выйти из строя. В этом случае если не знать материал феррита лучше всего начать с 67 витков и постепенно увеличивать количество витков до достаточной жесткости дуги при сварке. Например у меня вышло 80 витков, при этом у меня не грузится сеть, не греются силовые ключи и естественно нет шума от силового трансформатора и дросселя на выходе.

И так начинаем первый пуск и настройку при лампочке включенной как описано выше при этом куча конденсаторов из 14 штук по 0,15 мкФ должны быть включены обязательно на питание ключей плюс и минус 310 вольт. включаем осциллограф на эмиттер и коллектор нижнего плеча силовых ключей. Перед этим мы не цепляем оптрон обратной связи по напряжению, временно оставляем висеть на воздухе на осциллографе должно быть прямоугольный сигнал частоты мы берем отвертку и крутим резистор R1 до появления не большого загиба на нижнем углу прямоугольника. Крутить в сторону уменьшения частоты. Это будет говорить о перенасыщении сердечника силового трансформатора. При загибе в полученной частоте записать его и посчитать рабочую частоту сердечника силового трансформатора. Например частота перенасыщения 30 кГц считаем так 30 делим на 2 получаем 15 полученное число прибавляем к частоте перенасыщения 30 плюс 15 получаем 45. 45 кГц это наша рабочая частота. При этом лампочка должна светиться почти не заметно тускло. ток потребления не должна превышать на полном холостом ходу 300 мА обычно 150 мА. смотреть осциллограф чтобы не было всплесков напряжения выше 400 вольта обычно 320 вольт. Как все будет готово цепляем к лампочке чайник или нагреватель или утюг в 2000 ватт. На выход цепляем провод приличного сечения например от 5 квадратов 2 метра делаем короткое замыкание при этом лампочка не должна гореть на всю яркость она должна светиться чуть больше половины накала. Если она светится на всю яркость то нужно еще раз проверить датчик тока в фазировке просто пропустить провод с другой стороны. В крайних мерах уменьшить число витков на датчике тока. После того как будет все готово теперь плюс питание 310 вольт пустить на прямую без лампочки и нагревателя 2000 ватт. Не забываем про охлаждения силовых ключей радиатор с вентилятором лучше всего подходит радиатор от компьютера старого образца интел пентиум или амд атом. Силовые ключи должны быть вкручены на радиатор без слюдяной прокладки и через тонкий слой термопроводящую пасту КПТ8, чтобы обеспечить максимальную эффективность охлаждения. Радиатор надо делать отдельно от верхнего и нижнего плеча полумоста. Диоды снабберов и диоды включенные между питанием и трансформаторе разместить на тех же радиаторах, что и ключи но уже через слюдяную прокладку да бы избежать короткого замыкания. Все конденсаторы на шим генераторе должны быть именно пленочные с надписью NPF этим вы избежите не приятные моменты при погодных условиях. Конденсаторы на снабберах и на выходных диодах должны быть строго только типа К78-2 или СВВ81 ни какой любой мусор туда не совать, так как снабберы выполняют важную роль в этой системе и они поглощают всю негативную энергию который создает силовой трансформатор.

Кнопку пуска полуавтомата который находится на рукаве горелки нужно сделать в разрыв термодатчика перегрева.И еще чуть не забыл на выходе силового трансформатора когда настраиваете всю систему без оптрона обратной связи конденсатор 220мкФ тоже должен быть временно снят, чтобы не превысить выходное напряжение и при этом на выходе при таком раскладе напряжение должно быть не больше 55 вольта если оно достигает 100 вольта или больше желательно уменьшить количество витков например отмотать 2 витка, чтобы получить нужное нам напряжение после того можно ставить конденсатор и оптрон обратной связи. Резистор R55 - это регулятор напряжения R56 резистор ограничения максимального напряжения его лучше припаивать в плате рядом где оптрон чтобы избежать скачка при обрыве регулятора и подбирать его в сторону увеличения сопротивления до нужного максимального тока я например сделал до 27 вольта. Резистор R57 подстроечный под отвертку для подстройки минимального напряжения например 7 вольт.

Существует множество технологий сварки различных материалов и среди них - конденсаторная сварка. Технология известна с 30-х годов прошлого века и представляет разновидность . Соединение металлов происходит во время расплавления в местах короткого замыкания электрического тока за счет приложенной энергии разряда заряженных конденсаторов большой емкости. Процесс занимает 1-3 миллисекунды.

Основа аппарата - конденсатор или блок конденсаторов, которые заряжаются источником питания постоянного напряжения. Электроды конденсаторов после достижения необходимого уровня энергии в процессе заряда подключаются к точкам сварки. Ток, текущий во время разряда между свариваемыми деталями, вызывает нагревание поверхностей до такой степени, что металл расплавляется и образовывается качественный .

Несмотря на ряд преимуществ, конденсаторная сварка имеет ряд ограничений, не позволяющих использовать ее повсеместно. Среди них:

Accounts

Free Trial

Free Trial

Free Trial

Free Trial

Free Trial

Free Trial

Плюсы оборудования

высокая скорость процесса на автоматизированных производствах, до 600 точек в минуту

точность соединения деталей и повторяемость процессов на линии

не пропускает инфракрасное и ультрафиолетовое излучение

долговечность оборудования

сварка разных металлов

низкое тепловыделение, отсутствует необходимость применения охлаждающей жидкости

отсутствие таких расходных материалов, как электроды или сварочная проволока

Несмотря на некоторые недостатки, метод соединения металлов получил широкое применение в промышленности и в быту.

Типы сварочных конденсаторных аппаратов

Существует две разновидности аппаратов конденсаторной сварки - с разрядом накопителей энергии непосредственно на свариваемых поверхностях и с разрядом от вторичной обмотки трансформатора. Первый, бестрансформаторный способ, чаще используется в ударно-конденсаторной сварке. Второй способ, трансформаторный, применяется для создания качественного шва.

Ударно-конденсаторная аппаратура сваривает детали во время удара одного из электродов по детали. Во время удара детали поверхности плотно прижимаются друг к другу. Происходит разряд конденсатора, образующий микродугу, которая нагревает поверхности до температуры плавления металлов. Детали прочно соединяются.

В трансформаторном способе сварки конденсатор после заряда подключается к первичной обмотке понижающего трансформатора. На вторичной обмотке появляется потенциал, в несколько раз меньшей амплитуды входящего импульса. Во время разряда происходит сваривания деталей, конденсатор вновь заряжается и снова отдает энергию первичной обмотке трансформатора. Это позволяет производить длительные серии с частотой до 5 разрядов в секунду, которые создают прочные и точные сварочные швы.

Специфика применения

Конденсаторная сварка - экономичный процесс, поэтому ее удобно использовать в домашних условиях с однофазной сетью небольшой мощности. Промышленность выпускает бытовые сварочники мощностью 100-400 ватт, которые предназначены для домашнего использования или в небольших частных мастерских.

Особую популярность конденсаторная сварка получила в цехах ремонта кузовов автомобилей. В отличие от дуговой сварки, конденсаторная не прожигает и не деформирует тонкие стенки листов кузовных деталей. Отпадает необходимость в дополнительной рихтовке.

Также конденсаторная сварка используется в радиоэлектронике для сваривания изделий, которые не паяются при помощи обычных флюсов или выходят из строя от перегрева.

Аппараты конденсаторной сварки используют ювелиры для изготовления или ремонта ювелирных изделий.

В промышленности точечное соединение используется для:

  • приваривания болтов, крючков, гаек, шпилек и других метизов к поверхностям;
  • соединения между собой разных металлов, в том числе цветных;
  • сварки деталей часов, фото и кинотехники;
  • изготовления оптических и световых приборов;
  • сборки электронной аппаратуры
  • и др.

Конденсаторную сварку используют для соединения микроскопических деталей, которые невозможно сваривать дуговым методом.

Конденсаторный аппарат своими руками

Сварочный аппарат конденсаторного типа можно изготовить самостоятельно и использовать его в домашних целях. Для этого понадобятся

  • трансформатор на 220 вольт мощностью 5-20 Вт с выходным напряжением 5В;
  • четыре выпрямительных диода с прямым током не менее 300мА (например, Д226б);
  • тиристор ПТЛ-50, современная замена Т142-80-16, КУ 202 или подобные;
  • электролитический конденсатор 1000,0 х25 В;
  • переменный резистор 100 Ом;
  • трансформатор мощностью не менее 1000 Вт (подходит от микроволновок);
  • электроды или сварочный пистолет (разные конструкции описаны на страницах интернет многократно);
  • медный провод сечением не менее 35 мм.кв. - 1 метр.
  • переключатели, предохранители, корпус на усмотрение.

Если монтаж выполнен по схеме без ошибок и детали исправны, то проблем с работоспособностью устройства не возникнет.

Есть единственная проблема - выходной трансформатор. Если вы действительно решили воспользоваться трансформатором от микроволновки, а его можно купить дешево на рынках пользованных деталей, то приготовьтесь, что его необходимо переделать.

Необходимо удалить магнитные шунты и вторичную обмотку и намотать на освободившееся место 2-5 витков вторичной обмотки толстым медным проводом. В процессе настройки количество витков, возможно, придется изменить. Оптимальным считается, что выходное напряжение должно колебаться в пределах 2-7 вольт, но эта величина также зависит от длительности сварочного импульса, толщины свариваемых материалов. Не нужно бояться экспериментировать, выбирая разные режимы переменным резистором и изменяя количество витков. Но не пытайтесь добиться от аппарата того, что может делать обычный дуговой процесс. Варить водопроводные трубы и арматуру не получится, этот прибор для других целей.

Аппараты для бестрансформаторного типа ненамного сложнее, но они более громоздки. Потребуется набор конденсаторов общей емкостью около 100 000 микрофарад. Это приличная по весу и размеру батарея. Ее можно заменить компактным ионистором, но прибор не из дешевых. Кроме того, электролитические конденсаторы не долговечны. Поэтому портативные и бытовые конденсаторные аппараты точечной сварки обычно изготавливаются по трансформаторной схеме.

Современные аппараты изготавливаются несколько по другим технологиям. Частота и мощность разряда регулируется PIC-контроллерами, существует возможность автоматизации процессов, управления через интерфейс компьютера или монитора. Но физические процессы сварки не изменились. Собрав однажды простейший агрегат, вы сможете впоследствии добавить в него элементы компьютерного управления, автоматизации производства и контроля.

Если эта тема вам близка и вы готовы дополнить ее или оспорить, поделится своим мнением, рассказывайте, выкладывайте описания ваших решений в блоке комментариев.

Этот вид сварки относится к точечному способу. Он удобен в случае, когда требуется приваривать небольшие детали друг к другу, а одну и маленькую. Преимущественно конденсаторную сварку используют для работы с цветными металлами.

Как только появилась возможность проводить точеную сварку в домашних условиях, метод стал набирать популярность среди неопытных сварщиков. Такая ситуация и прибавила актуальности вопросу на сегодняшний день. Что собой представляет этот процесс и как собственноручно сделать сварку для домашнего использования? Этот вопрос мы и постараемся сегодня разобрать в деталях.

Первое отличие, которое бросается в глаза, это скорость сварки и её экологичность. Стандартный прибор для конденсаторной сварки работает на высоком напряжении. Это и позволяет сэкономив электроэнергию, получить качественный и ровный шов. Основное её применение лежит в микросварке или же при надобности осуществить сварку больших сечений. Это происходит при таком принципе:

  1. Конденсаторы собирают в себе требуемое количество энергии;
  2. Заряд переходит в тепло, которое используется для сварки.

Как уже упоминали ранее, этот вид сварки является экологически безопасным. Приборам не требуется жидкость для охлаждения из-за отсутствия тепловых выделений. Это преимущество позволяет прибавить времени к сроку эксплуатации конденсаторного устройства.

Принцип работы конденсаторной сварки

В процессе сваривания точечным способом, детали подвергаются зажиму двумя электродами, на которые приходит кратковременный ток. Затем между электродами образуется дуга, она и нагревает металл, расплавляя его. Сварочный импульс приходит в работу в течение 0,1 сек., он предоставляет общее ядро расплавки для обеих подвергающихся сварке частей заготовок. Когда снимается импульс, детали продолжают сжиматься под давлением нагрузки. В результате получаем общий сварной шов.

Существуют вторичные обмотки, с них ток попадает на электроды, а на первичную обмотку, приходится импульс, который образовался при конденсаторном заряде. В конденсаторе накапливание заряда происходит в промежутке между поступления импульса на два электрода. Особенно хорошие результаты приходят, когда речь идёт о или меди. Существует ограничение по тому, какой должна быть толщина заготовок, она не должна превышать 1,5 мм. Может, это и минус, но такая схема прекрасно проявляет себя при сваривании разнородных материалов.

Виды точечной сварки

Различают два основных вида конденсаторной сварки своими руками:

  1. Трансформаторный. При которой конденсатор разрядит энерго-заряд на обмотку трансформаторного оборудования. При этом заготовки расположены в сварочном поле, которое соединяется со вторичной обмоткой.
  2. Бестрансформаторный.

Преимущества

Как и у всех других видов, самостоятельная конденсаторная сварка отличается рядом положительных особенностей:

  1. При стабильной работе, есть возможность сэкономить электроэнергию;
  2. Надёжность и практичность. Скорость работы позволяет точечной сварке быть доступной при воздушном охлаждении;
  3. Скорость работы;
  4. Сварочный ток очень плотный;
  5. Аккуратность. Учитывая дозу потребляемой энергии, в поле соприкосновения образуется надёжный шов, компактной толщины. Такой способ широко используют для тонкой сварки цветного металла;
  6. Экономичность. Потребляемая мощность равна 20 кВА максимум. Это происходит при помощи отбора мощности благодаря стабилизации напряжения в сети.

Схема сборки агрегата своими руками

Через диодный мост (выпрямительный) проводится первичная обмотка, затем подключается к источнику напряжения. С тиристора идёт сигнал на мостовую диагональ. Тиристор управляется специальной кнопкой для запуска. Конденсатор подключают к тиристору, точнее к его сети, к диодному мосту, затем его выводят на обмотку (первичную). Чтобы зарядить конденсатор, включается вспомогательная цепь с диодным мостом и трансформатором.

Как источник импульса, используют конденсатор, его емкость должна быть 1000-2000 мкФ. Для конструкции системы производится трансформатор из сердечника типа Ш40, требуемый размер 7 см. Чтобы сделать первичную обмотку, нужен провод диаметром 8 мм, который обматывается 300 раз. Вторичная обмотка предполагает использование медной шины, в 10 обмоток. Для входа используют практически любые конденсаторы, единственное требование мощность в 10 В., напряжение 15.

Когда работа будет требовать соединения заготовок до 0,5 см, стоит применить кое-какие коррективы в схему конструкции. Для более удобного управления сигналом, используют пусковик серии МТТ4К, он включает параллельные тиристоры, диоды и резистор. Дополнительное реле позволит корректировать рабочее время.

Такая самодельная конденсаторная сварка, работает при следующей последовательности действий:

  1. Нажимаем пусковую кнопку, она запустит временное реле;
  2. Трансформатор включается с помощью тиристоров, после реле отключается;
  3. Резистор используют для определения длительности импульса.

Как происходит процесс сварки?

После того как конденсаторная сварка своими руками собрана, мы готовы приступить к работам. Для начала стоит подготовить детали, зачистив их от ржавчины и другой грязи. Перед тем как поместить заготовки между электродами, их соединяют в таком положении, в котором их нужно сваривать. Затем запускается прибор. Теперь можно сжать электроды и прождать 1-2 минуты. Заряд, который скапливается в высокоемкостном конденсаторе пройдёт через приварной крепёж и поверхность материала. В результате он плавится. Когда эти действия проделаны, можно приступать к последующим шагам и сваривать остальные части металла.

Перед сварочными работами в домашних условиях, стоит приготовить такие материалы, как наждачная бумага, болгарка, нож, отвертка, любой зажим или пассатижи.

Вывод

Конденсаторную сварку очень широко применяют как дома, так и в промышленной зоне, как мы видим, она очень удобна и проста в применении, плюс ко всему имеет большое количество преимуществ. С помощью приведённой информации, Вы сможете вывести свои знания на новый уровень и удачно примените точечную сварку на практике.